

SP-910 Multi-Parameter Analyzer

Colorimeter + Fluorometer + Turbidimeter

Pyxis Lab® Inc.

21242 Spell Circle Tomball, TX 77375 www.pyxis-lab.com

PROCEDURES MANUAL

Table of Contents

HAC	CH REQUIRED REAGENTS	1
PYX	IS REQUIRED REAGENTS	10
EXP	RESSION FORM	12
SP-9	910 Reference APHA and EPA Methods	15
1.	Fluorescence - Fluorescein	17
2.	Fluorescence - PTSA	21
3.	Turbidity	25
4.	Aluminum - AL	29
5.	Alkalinity, Total, Low Range - ALKLR	33
6.	Alkalinity, Total, High Range - ALKHR	36
7.	Benzotriazole/Tolyltriazole - AZOL	39
8.	Bleach - BLCH	43
9.	Bleach - BLCHL	46
10.	Bromine - Br-T	49
11.	Calcium - Ca	52
12.	Calcium Hardness - CaHR	56
13.	Hardness, Total, Ultra-Low Range - CaMgL	59
14.	Oxygen Demand, Chemical (Reactor Digestion 20 Minutes Method) - CODLR/CODHF	₹ 63
15.	Chloride Low Range - CLLR	69
16.	Chloride Medium Range - CLMR	72
17.	Chlorine, Total, High Range - CL2HR	75
18.	Chlorine, Free, High Range - CL2HR	78
19.	Chlorine, Free, Ultra-High Range - CL2UH	81
20.	Chlorine, Free - CL-F	84
21.	Chlorine, Free - CLTMB	87
22.	Chlorine Dioxide - CLO2	90
23.	Chlorine Dioxide Direct Read Medium Range - CLO2D	94
24.	Chlorine Dioxide Direct Read High Range - CLO2H	97
25.	Chlorine, Total - CL-T	100
26.	Cyanide - CN	103
27.	Color, True and Apparent - COLOR	107
28.	Chromium, Hexavalent - Cr6	110
29.	Chromium, Total - CrT	113
30.	Copper - CuBi	117
31.	Copper - CuLR	120
32.	Cyanuric Acid - CYAN	124
33.	Cvclohexvlamine - CYN-F	127

34.	Diethyl hydroxylamine - DEHA	130
35.	Dissolved Oxygen-DO	134
36.	Fluoride - F	137
37.	Total Iron - FeMo	140
38.	Total Iron - FePh	144
39.	Total Iron - FeSal	147
40.	Total Iron - FeTp	150
41.	Total Iron - FeZi	153
42.	Hydrogen peroxide - H2O2	157
43.	Hydrogen peroxide, Low Range - H2O2L	160
44.	Magnesium - Mg	163
45.	Manganese, High Range - MnHR	167
46.	Manganese, Low Range - MnLR	170
47.	Molybdenum, Molybdate, High Range - MoHR	174
48.	Molybdenum, Molybdate, Low Range - MoLR	178
49.	Hydrazine - N2H4	182
50.	Chloramine, Mono, Low Range - NH2C	185
51.	Nitrogen, Total (Test 'N Tube Method) - N-TLR	188
52.	Nitrogen, Total (Test 'N Tube Method) - N-THR	193
53.	Nitrogen, Ammonia - NH3S	198
54.	Ammonia Nitrogen - NH3-F	202
55.	Nitrogen, Ammonia (Test 'N Tube) - NH3LR	205
56.	Nitrogen, Ammonia (Test 'N Tube) - NH3HR	209
57.	Nickel - Ni	213
58.	Nitrite Direct Read Method - NO2D	217
59.	Nitrite, High Range - NO2HR	220
60.	Nitrite, Low Range - NO2LR	223
61.	Nitrate, High Range - NO3HR	226
62.	Nitrate, Mid-Range - NO3MR	230
63.	Ozone - O3	234
64.	Nitrate, High Range (Test 'N Tube Method) - NO3CA	237
65.	Peroxyacetic - PAA	240
66.	Phosphorus, Reactive - OPO4	243
67.	Phosphonates - Orgp	246
68.	Phosphorus, Reactive - Pami	251
69.	Phosphorus, Total (Test 'N Tube Method) - P-TLR	254
70.	Phosphorus, Total (Test 'N Tube Method) - P-THR	257
71.	Potential of Hydrogen - pH	260
72.	Phosphorus, Reactive - PMoV	263
73.	Polymer - POLY	266
74.	Antimony Trivalent - Sb3+	269

75.	Antimony, Total - Sb-T	272
76.	Sulfide - S2	275
77.	Silica, High Range - SiHR	278
78.	Silica, Low Range - SiLR	282
79.	Sulfite, Low Range - SO2LI	286
80.	Sulfate - SO4	289
81.	Total Organic Carbon -TOC	292
82.	Urea (Reactor Digestion Method) - Urea	296
83.	Zinc - ZnXO	299
84.	Zinc - Zn	302

HACH REQUIRED REAGENTS

Method	Wave length (nm)	Required Reagents	Cat. No.	Includes	Cat. No.
				AluVer 3 Aluminum Reagent Powder Pillow	14290-99
AL	525	Aluminum Reagent	22420-00	Ascorbic Acid Powder Pillow	14577-99
				Bleaching 3 Reagent Powder Pillow	14294-49
AZOL	420	Triazole Reagent Powder Pillows	21412-99	N/A	N/A
Br-T	525	DPD Total Chlorine Reagent Powder Pillows	21056-69	N/A	N/A
		Hardness Reagent 525 Set	23199-00	Alkali Solution for Calcium and Magnesium Test	22417-32
Са	525			Calcium and Magnesium Indicator Solution	22418-32
				EDTA Solution, 1 M	22419-26
CaMgL	630	ULR Hardness	26031-01	EGTA Solution Chlorophosphonazo Solution	22297-26 25895-49
		Reagent Set		CDTA Solution	25896-36
CODLR	420 630	CODLR Reagent	2038225	Low Range, 0 to 150 mg/L COD	N/A
CODHR	560 570 630	CODHR Reagent	2038325	High Range, 0 to 1,500 mg/L COD	N/A
CL2HR	420	DPD Total Chlorine Reagent Powder Pillows	14064-99	N/A	N/A
CL2HR	420	DPD Free Chlorine Reagent Powder Pillows	14070-99	N/A	N/A

Method	Wave length (nm)	Required Reagents	Cat. No.	Includes	Cat. No.
CL-F	525	DPD Free Chlorine Powder Pillows	21055-69	N/A	N/A
CLO2	525	Chlorine Dioxide DPD/Glycine Reagent Set	27709-00	DPD Free Chlorine Reagent Powder Pillows	21055-69
		Neagent Set		Glycine Reagent	27621-33
CLO2D	365	Direct Reading	N/A	N/A	N/A
CL-T	525	DPD Total Chlorine Reagent Powder Pillows	21056-69	N/A	N/A
	630	Cyanide Reagent Set 24302		CyaniVer 3 Cyanide Reagent Powder Pillows	21068-69
CN			24302-00	CyaniVer 4 Cyanide Reagent Powder Pillows	21069-69
				CyaniVer 5 Cyanide Reagent Powder Pillows	21070-69
		Aspirator, vacuum	2131-00	N/A	N/A
		Filter Holder, 47 mm, 300 mL graduated	13529-00	N/A	N/A
COLOR	420	Filter, membrane, 47 mm, 0.45 microns	13530-00	N/A	N/A
		Flask, filtering, 500 mL	546-49	N/A	N/A
		Stopper, No. 7, one hole	2119-07	N/A	N/A

Method	Wave length (nm)	Required Reagents	Cat. No.	Includes	Cat. No.
Cr6	570	ChromaVer 3 Chromium Reagent Powder Pillows	12710-99	N/A	N/A
				Acid Reagent Powder Pillows	2126-99
CrT		Total Chromium	22425-00	ChromaVer 3 Chromium Reagent Powder Pillows	12066-99
CIT	570	Reagent Set	22423-00	Chromium 1 Reagent Powder Pillows	2043-99
				Chromium 2 Reagent Powder Pillows	2044-99
CuBi	570	CuVer 1 Copper Reagent Powder Pillows	21058-69	N/A	N/A
				Copper Masking Reagent Powder Pillows	26034-49
CuLR	420	Copper Reagent Set	26033-00	Porphyrin 1 Reagent Powder Pillows	26035-49
				Porphyrin 2 Reagent Powder Pillows	26036-49
CYAN	570	Cyanuric Acid 2 Reagent Powder Pillow	2460-66	N/A	N/A
				DEHA Reagent 1 Powder Pillow	21679-69
DEHA	570	DEHA Reagent Set	24466-00	DEHA Reagent 2 Powder Pillow	21680-42
F	570	SPADNS Reagent for Fluoride	444-49	N/A	N/A

Method	Wave length (nm)	Required Reagents	Cat. No.	Includes	Cat. No.
FeMo		FerroMo Reagent	25448-00	FerroMo Iron Reagent 1 Powder Pillows	25437-68
reivio	525	Set	25448-00	FerroMo Iron Reagent 2 Powder Pillows	25438-66
FePh	455	FerroVer Iron Reagent Powder Pillows	21057-69	N/A	N/A
FeTp	560	TPTZ Iron Reagent Powder Pillows	26087-99	N/A	N/A
FeZi	525	FerroZine Iron Reagent Solution Pillows	2301-66	N/A	N/A
		Hardness Reagent 525 Set	23199-00	Alkali Solution for Calcium and Magnesium Test	22417-32
Mg	525			Calcium and Magnesium Indicator Solution	22418-32
				EDTA Solution, 1 M	22419-26
				EGTA Solution	22297-26
		High Range	24300-00	Buffer Powder Pillows, citrate type for Manganese	21076-69
MnHR	525			Sodium Periodate Powder Pillows for Manganese	21077-69
				Alkaline-Cyanide Reagent	21223-26
MnLR	570	Manganese Reagent Set	26517-00	Ascorbic Acid Powder Pillows	14577-99
				PAN Indicator Solution, 0.1%	21224-26
MoHR				MolyVer 1 Reagent Powder Pillows	26042-99
	455	455 Molybdenum Reagent Set	26041-00	MolyVer 2 Reagent Powder Pillows	26043-99
				MolyVer 3 Reagent Powder Pillows	26044-99

Method	Wave length (nm)	Required Reagents	Cat. No.	Includes	Cat. No.
MOLR	630	Molybdenum Reagent Set	24494-00	Molybdenum 1 Reagent for 20 mL sample size Molybdenum 2 Reagent Solution	23524-49 23525-12
N2H4	420	HydraVer 2 Hydrazine Reagent	1790-32	N/A	N/A
NH2C	630	Monochlor F Reagent Pillows	28022-46	N/A	N/A
				TN Reagent C Vials, Acid Solution*	26721-45
		Test 'N Tube Total Nitrogen Reagent Set	26722-45	TN Hydroxide Reagent Sample Digestion Vials*	26717-45
N-TLR	455 420			TN Persulfate Reagent Powder Pillows	26718-49
				TN Reagent A, Bisulfite Powder Pillows	26719-49
				TN Reagent B, Indicator Powder Pillows	26720-49
				HR Total Nitrogen Hydroxide Digestion Vials.	N/A
				Total Nitrogen Persulfate Reagent Powder Pillows	26718-46
N-THR	455 420	1010111111000111	27141-00	Total Nitrogen Reagent A, Bisulfite Powder Pillows	26719-46
	1.20			Total Nitrogen Reagent B, Indicator Powder Pillows	26720-46
				Total Nitrogen Reagent C Vials, Acid Solution	N/A

Method	Wave length (nm)	Required Reagents	Cat. No.	Includes	Cat. No.
		Ammonia		Ammonia Cyanurate Reagent Powder Pillows	26531-99
NH3S	630	Nitrogen Reagent Set for 10-mL samples	26680-00	Ammonia Salicylate Reagent Powder Pillows	26532-99
				AmVer Diluent Reagent, Low Range Test 'N Tube	N/A
NH3LR	560 570 630	AmVer Reagent Set for Nitrogen, Ammonia, Low	26045-45	Salicylate Reagent Powder Pillows, 5 mL sample	23952-66
		Range TNT		Cyanurate Reagent Powder Pillows, 5 mL sample	23954-66
	560 570 630	Set for Nitrogen, Ammonia, High	26069-45	AmVer™ HR Reagent Test 'N Tube™ Vials	N/A
NH3HR				Ammonia Salicylate Reagent Powder Pillows	23952-66
				Ammonia Cyanurate Reagent Powder Pillows	23954-66
			22426-00	EDTA Reagent Powder Pillows	7005-99
Ni	570	Nickel Reagent Set, 25 mL sample		Phthalate-Phosphate Reagent Powder Pillows	21501-66
				P.A.N. Indicator Solution, 0.3%	21502-32
NO2D	365	Direct Reading	N/A	N/A	N/A
NO2HR	560	NitriVer 2 Nitrite Reagent Powder Pillows	21075-69	N/A	N/A

Method	Wave length (nm)	Required Reagents	Cat. No.	Includes	Cat. No.	
NO2LR	525	NitriVer 3 Nitrite Reagent Powder Pillows	21071-69	N/A	N/A	
NO3HR	455	NitraVer 5 Nitrate Reagent Powder Pillows	21061-69	N/A	N/A	
NO3MR	420	NitraVer 5 Nitrate Reagent Powder Pillows	21061-69	N/A	N/A	
		NitraVer X Nitrate, High		Nitrate Pretreatment Solution Vials	N/A	
NОЗСА	455 420	Range Test 'N Tube Reagent Set	26053-45	NitraVer X Reagent B Powder Pillows	26055-46	
OPO4	630	PhosVer 3 Phosphate Reagent Powder Pillows	21060-69	N/A	N/A	
Orga	630		Phosphonates	24207.00	PhosVer 3 Phosphate Reagent Powder Pillows	21060-69
Orgp		Reagent Set	24297-00	Potassium Persulfate Pillow for Phosphonate	20847-69	
		High Range		Amino Acid Reagent	1934-32	
Pami	630	Reactive Phosphorus Reagent Set	22441-00	Molybdate Reagent	2236-32	
			27426-45	PhosVer 3 Phosphate Reagent Powder Pillows	21060-46	
P-TLR	560	Total Phosphorus Test 'N Tube		Potassium Persulfate powder Pillows	20847-66	
	570 630	570 Paggant Sat		Sodium Hydroxide Solution, 1.54 N	27430-42	
				Test 'N Tube Acid Dilution Vials	N/A	

Method	Wave length (nm)	Required Reagents	Cat. No.	Includes	Cat. No.
				Molybdovanadate Reagent	20760-26
	455	Total High Range Phosphorus		Potassium Persulfate Powder Pillows	20847-66
P-THR	420	Test 'N Tube™ Reagent Set	27672-45	Sodium Hydroxide Solution, 1.54 N	27430-42
		neagent set		Total Phosphorus Test 'N Tube™ Vials	N/A
		Dropper, 0.5&1.0 mL marks	21247-20	N/A	N/A
На	560	Phenol Red Indicator Solution, spec grade	26575-12	N/A	N/A
PMoV	455	Molybdovanadate Reagent	20760-32	N/A	N/A
62	630	Sulfide Reagent Set	22445-00	Sulfide 1 Reagent	1816-32
S2-				Sulfide 2 Reagent	1817-32
		High Range Silica Reagent Set	24296-00	Acid Reagent Powder Pillows for High Range Silica	21074-69
SiHR	455			Citric Acid Powder Pillows	21062-69
				Molybdate Reagent Powder Pillows for HR Silica	21073-69
				Amino Acid F Reagent Powder Pillows	22540-69
SiLR	630	Low Range Silica Reagent Set	24593-00	Citric Acid Powder Pillows	21062-69
				Molybdate 3 Reagent	1995-26
SO4	525	SulfaVer 4 Sulfate Reagent Powder Pillows	21067-69	N/A	N/A

Method	Wave length (nm)	Required Reagents	Cat. No.	Includes	Cat. No.
TOC	560	Total Organic Carbon Direct Method Low Range Test 'N Tube Reagent Set	2760345	Acid Digestion Solution Vials, Low Range TOC (not sold separately) Buffer Solution, Sulfate (not sold separately; see alternate size below) Funnel, micro, poly Indicator Ampule, Low Range TOC (not sold separately) TOC Persulfate Powder Pillows (not sold separately)	N/A 45233 2584335 N/A N/A
Zn	n 630 Zinc	Zinc Reagent Set	24293-00	Cyclohexanone	14033-32
<u> </u>				ZincoVer 5 Reagent Powder Pillows	21066-69

PYXIS REQUIRED REAGENTS

IMPORTANT NOTE Due to severe export regulatory restrictions, the following Pyxis specialty reagents are available for purchase in mainland China only.

Method	Wavelength	Required Reagents	PN	Includes	PN	Geographic Availability
ALKLR	(nm) 570	ALK Reagent Set	31068	ALK-1	N/A	China Only
				ALK-2	N/A	China Only
ALKHR	630	ALK Reagent Set	31068	ALK-1	N/A	China Only
				ALK-2	N/A	China Only
	455			CaHR-1	N/A	China Only
CaHR	560	CaHR Reagent Set	31073	CaHR-2	N/A	China Only
CLLR	525	CLLR Reagent	31009	N/A	N/A	China Only
CLMR	630	CLMR Reagent	31004	N/A	N/A	China Only
CL2UH	525	CL2UH Reagent	31074	N/A	N/A	China Only
CLTMB	420	CLTMB Reagent	31075	N/A	N/A	China Only
CLO2H	455	Direct Reading	N/A	N/A	N/A	China Only
	455	DO Reagent		DO-1	N/A	China Only
DO			31119	DO-2	N/A	China Only
				DO-3	N/A	China Only
FeSal	420	FeSal Reagent	31078	N/A	N/A	China Only
H2O2	570	H2O2 Reagent	31079	N/A	N/A	Globally Available
				H2O2L-1	N/A	Globally Available
H2O2L	455	H2O2L Reagent Set	31124	H2O2L-2	N/A	Globally Available
				NH3-F-1	N/A	China Only
NH3-F	365	Fluorescent	31091	NH3-F-2	N/A	China Only
		Method Set		NH3-F-3	N/A	China Only
03	525	O3 Reagent	31118	N/A	N/A	Globally Available
PAA	525	PAA Reagent	31079	N/A	N/A	China Only
				POLY-1	N/A	China Only
POLY	525	POLY Reagent Set	31092	POLY-2	N/A	China Only
				Sb3+ -1	N/A	China Only
Sb3+	560	Sb3+ Reagent Set	31107	Sb3+ -2	N/A	China Only
				Sb3+ -3	N/A	China Only
				Sb3+ -4	N/A	China Only
				Sb-T -1	N/A	China Only
Sb-T	560	Sb-T Reagent Set	31108	Sb-T -2	N/A	China Only
				Sb-T -3	N/A	China Only
				Sb-T -4	N/A	China Only

Method	Wavelength	Required Reagents	PN	Includes	PN	
	(nm)					
				SO2LI-1	N/A	China Only
SO2LI	365	SO2LI Reagent Set	30604	SO2LI-2	N/A	China Only
				Urea-1	N/A	China Only
Urea	420	Urea Reagent Set	31081	Urea-2	N/A	China Only
				ZnXO-1	N/A	China Only
ZnXO	570	ZnXO Reagent Set	31052	ZnXO-2	N/A	China Only

EXPRESSION FORM

Method	Expression Form		
Al	Al	Al2O3	_
ALKLR	CaCO3	_	_
ALKHR	CaCO3	_	_
AZOL	BENZO	TOLY	_
BLCH	Chlr	_	_
BLCHL	Chlr	_	_
Br-T	Br2	_	_
Ca	CaCO3	Ca	_
CaHR	Caco3	Ca	<u> </u>
CaMgL	Caco3	Ca	_
CODLR/CODHR	COD	_	_
CLLR	CL	_	<u> </u>
CLMR	CL	_	_
CL2HR	CL2	_	_
CL2HR	CL2	_	<u> </u>
CL2UH	CL2	_	_
CL-F	CL2	_	_
CLTMB	CL2	_	_
CLO2	CLO2	_	_
CLO2D	CLO2	_	_
CLO2H	CLO2	_	_
CL-T	CL2	_	_
CN	CN	_	_
COLOR	units	_	_
Cr6	Cr6	CrO4	_
CrT	Cr6	CrO4	_
CuBi	Cu	_	_
CuLR	Cu	_	_
CYAN	_	_	_
CYN-F	N	_	_
DEHA	DEHA	_	_
DO	02	_	_
F	F	_	_
FeMo	Fe	_	
FePh	Fe	_	
FeSal	Fe	_	-
FeTp	Fe	_	_
FeZi	Fe	_	
H2O2	H2O2	_	_
H2O2L	H2O2	_	_

CaCO3 Mn Mn Mo6 Mo6 N2H4 CL2 N N	Mg MnO4 MnO4 MoO4 MoO4 — — — — —	
Mn Mo6 Mo6 N2H4 CL2 N N	MnO4 MoO4	
Mo6 Mo6 N2H4 CL2 N N	MoO4	
Mo6 N2H4 CL2 N N		
N2H4 CL2 N N	MoO4	_ _ _ _
CL2 N N		_ _ _
N N N	_ _ _	_ _
N N		_
N	_	
		_
	NH3	_
N	_	_
N	NH3	_
N	NH3	_
_	_	_
NO2	N	NaNO2
NO2	N	NaNO2
NO2	N	NaNO2
N	NO3	NaNO3
N	NO3	NaNO3
N	_	_
PAA	_	_
PO4	Р	P2O5
PO4	PBTC	HEDP
PO4	Р	P2O5
PO4	Р	P2O5
PO4	Р	P2O5
рН	_	_
PO4	Р	P2O5
_	_	_
Sb	_	_
Sb	_	_
S2-	_	_
SiO2	Si	_
SiO2	Si	_
SO2	_	_
SO4	_	_
Urea	_	_
Zn	_	_
Zn	_	_
	N N N N N NO2 NO2 NO2 NO2 N N N N N PAA PO4 PO4 PO4 PO4 PO4 PO4 Sb Sb Sb S2- SiO2 SiO2 SiO2 SO2 SO4 Urea Zn	N NH3 N NH3 N NH3 N NH3 — — NO2 N NO2 N NO2 N NO3 N N NO3 N — PAA — PO4 P Sb — Sb — Sb — Sb — SiO2 Si SiO2 Si SO4 — Urea — Zn —

Note:

- 1. <u>Press the CONF key in the method result page to launch the method setup and calibration page.</u>
- 2. <u>Press the FORM key to select a concentration form from the list of forms that are available for this specific method</u>

SP-910 Reference APHA and EPA Methods

Item	Description	Reference Method		
Turb	Turbidity	EPA 180.1 and ISO 7027		
CODLR/	Oxygen Demand, Chemical	APHA 5220 D. Closed Reflux, Colorimetric		
CODHR	(Reactor Digestion 20 Minutes	Method EPA 410.4		
	Method) – CODLR/CODHR			
CL2HR	Chlorine, Total, High Range -	APHA 4500-CI G. DPD Colorimetric Method		
	CL2HR	EPA 330.5		
CL2HR	Chlorine, Free, High Range -	APHA 4500-CI G. DPD Colorimetric Method		
	CL2HR	EPA 330.5		
CL2UH	Chlorine, Free, Ultra-High Range -	APHA 4500-CI Blodometric Method I EPA		
	CL2UH	330.3		
CL-F	Chlorine, Free - CL-F	APHA 4500-CI G. DPD Colorimetric Method		
		EPA 330.5		
CLO2	Chlorine Dioxide - CLO2	APHA 4500-CIO2 D. DPD Colorimetric		
		Method		
CL-T	Chlorine, Total - CL-T	APHA 4500-CI G. DPD Colorimetric Method		
		EPA 330.5		
COLOR	Color, True and Apparent - COLOR	APHA 2120-COLOR C Spectrophotometric		
		Method EPA110.3		
Cr6	Chromium, Hexavalent - Cr6	APHA 3500-Cr B Colorimetric Method EPA		
		7196A		
CrT	Chromium, Total - CrT	APHA 3500-Cr B Colorimetric Method EPA		
		7196A		
CN	Cyanide - CN	APHA 4500-CN E. Colorimetric Method EPA		
		335.3		
F	Fluoride - F	APHA 4500-F- D SPADNS Method EPA 340.1		
FePh	Total Iron - FePh	APHA 3500-Fe B Phenanthroline Method		
MnHR	Manganese, High Range - MnHR	APHA 3500-Mn B Persulfate Method		
N-TLR	Nitrogen, Total (Test 'N Tube	APHA 4500-N C Persulfate Method		
	Method) - N-TLR			
N-THR	Nitrogen, Total (Test 'N Tube	APHA 4500-N C Persulfate Method		
	Method) - N-THR			
NH3S	Nitrogen, Ammonia - NH3S	APHA 4500-NH3 F Phenate Method EPA		
		350.1		
NH3LR	Nitrogen, Ammonia (Test 'N Tube)	APHA 4500-NH3 F Phenate Method EPA		
	- NH3LR	350.1		
NH3HR	Nitrogen, Ammonia (Test 'N Tube)	APHA 4500-NH3 F Phenate Method EPA		
	- NH3HR	350.1		
NO3HR	Nitrate, High Range - NO3HR	APHA 4500-NO3 E Cadmium Reduction		
		Method EPA 353.3		

Item	Description	Reference Method
NO3MR	Nitrate, Mid-Range - NO3MR	APHA 4500-NO3 E Cadmium Reduction
		Method EPA 353.3
OPO4	Phosphorus, Reactive - OPO4	APHA 4500-P E Ascorbic Acid Method EPA
		365.2
PMoV	Phosphorus, Reactive - PMoV	APHA 4500-P C Vanadomolybdophosphoric
		Acid Method
S2-	Sulfide - S2-	APHA 4500-S2- D. Methylene Blue Method
		EPA 376.2
SiHR	Silica, High Range - SiHR	APHA 4500-SiO2 C Molybdosilicate Method
SiLR	Silica, Low Range - SiLR	APHA 4500-SiO2 D Heteropoly Blue Method
		EPA 370.1
SO4	Sulfate - SO4	APHA 4500-S04 ²⁻ E Turbidimetric Method
		EPA 375.4
Zn	Zinc - Zn	APHA 3500-Zn B. Zincin Method EPA 430.2
OrgP	Phosphonates - OrgP	APHA 4500-P I In-line UV/Persulfate
		Digestion and Flow Injection Analysis for
		Total Phosphorus (PROPOSED)EPA 365.3
P-TLR	Phosphorus, Total (Test 'N Tube	APHA 4500-P I In-line UV/Persulfate
	Method) - P-TLR	Digestion and Flow Injection Analysis for
		Total Phosphorus (PROPOSED) EPA 365.3
P-THR	Phosphorus, Total (Test 'N Tube	APHA 4500-P I In-line UV/Persulfate
	Method) - P-THR	Digestion and Flow Injection Analysis for
		Total Phosphorus (PROPOSED)

1. Fluorescence - Fluorescein

Testing Program

Description: SP-910 Fluorescein Method (0.1 - 500.0 ppb Fluorescein)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial (SP-910, Associated Sample Vial)

Program:

1. Press OK key on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

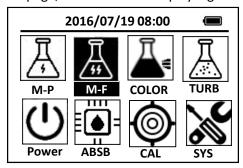


Figure 1

- 2. Move the icon focus to M-F icon using the navigational (left, right, up, or down) keys.
- 3. Fill the 10 ml sample vial with the test solution and tightly cap the sample vial.

 Use a soft cloth or lint free paper tissue to clean the sample vial.
- 4. Place the sample vial into the sample vial compartment and slide the light shield cover to the closed position.
- 5. Press the OK key in the main page. Pyxis SP-910 will start to measure the fluorescein concentration in the sample.
- 6. Pyxis SP-910 will display the fluorescein concentration in ppb as fluorescein.

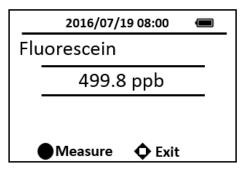


Figure 2

Note:

For best results, ensure that the sample vial is clean. Wipe off water on the outside wall

of the sample vial using a lint-free tissue paper. Fill the sample vial to the 10 ml mark. If the sample contains air bubbles, tap the sample vial gently to remove the bubbles before placing the sample vial to sample vial compartment.

Fluorescein calibration

- Deionized water (DI) as the blank calibration solution and the 50 ppb/250 ppb/500 ppb fluorescein calibration standard solution is needed.
- 2. Press the CAL on the main page, then choose the Fluorescein and press the ok key to launch the fluorescein calibration page.
- 3. Follow the message prompts, insert the DI blank into the sample vial compartment and press the OK key measure the deionized water.

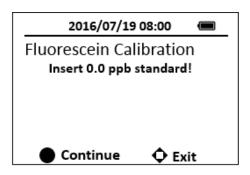


Figure 3

4. Follow the message prompts, and insert the 50-ppb standard into the sample vial compartment and press the OK key to measure the 50-ppb standard.

Figure 4

5. Press the OK key to save the paraments.

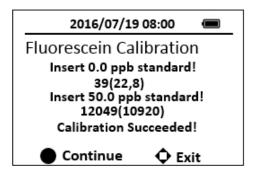


Figure 5

6. Follow the message prompts, and insert the 250-ppb standard into the sample vial compartment and press the OK key to measure the 250-ppb standard.

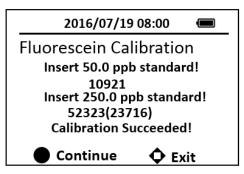


Figure 6

- 7. Press the OK key to save the paraments.
- 8. Follow the message prompts, and insert the 500-ppb standard into the sample vial compartment and press the OK key to measure the 500-ppb standard.

Figure 7

- Press the OK key to return to the main page
 The standard solution shall be stored in a brown or black opaque bottle.
 Exposing the fluorescein standard to light will cause the standard losing the fluorescein concentration.
- 10. If calibration fails, the followings should be checked:
 - The DI blank is being contaminated.
 - The fluorescein standard solution is decayed or being contaminated.
 - The light shield cover is not in the closing position.
 - The sample vial compartment is blocked with debris, water, or other materials.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 Hydrochloric Acid Solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the

- triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity,
 except for during a measurement. Pressing and holding the OK key for 3
 seconds will wake up the instrument, and return to the original page if it has
 any measurement data.

2. Fluorescence - PTSA

Testing Program

Description: SP-910 PTSA Method (1.0 - 300.0 ppb PTSA)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial

Program:

1. Press OK key on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

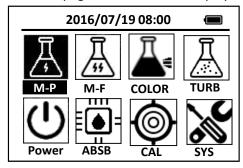


Figure 8

- 2. Move the icon focus to M-P icon using the navigational (left, right, up, or down) keys.
- 3. Fill the 10 ml sample vial with the test solution and tightly cap the sample vial.
- 4. Place the sample vial into the sample vial compartment and slide the light shield cover to the closed position.
- 5. Press the OK key in the main page. Pyxis SP-910 will start to measure the PTSA concentration in the sample.
- 6. Pyxis SP-910 will display the PTSA concentration in ppb as PTSA.

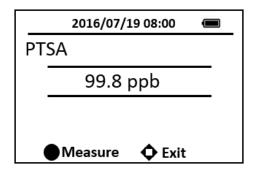


Figure 9

Notes:

- 1. <u>During the fluorescence measurement to determine the PTSA concentration,</u>

 Pyxis SP-910 checks the sample turbidity. If the sample turbidity value detected is greater than 40 NTU, Pyxis SP-910 will display a warning. For best results, the sample should be filtered if turbidity exceeds 40 NTU.
- 2. <u>Sample color causes a lower PTSA concentration to be measured. Pyxis SP-910</u> <u>automatically compensates for sample color. If the sample color is too intense,</u> <u>Pyxis SP-910 will display a warning.</u>
- 3. For best results, ensure that the sample vial is clean. Wipe off water on the outside wall of the sample vial using a lint-free tissue paper. Fill the sample vial to the 10 ml mark. If the sample contains air bubbles, tap the sample vial gently to remove the bubbles before placing the sample vial to sample vial compartment.

PTSA calibration

- 1. Deionized water (DI) as the blank calibration solution and the 100 ppb PTSA calibration standard solution are needed.
- 2. Press the CAL on the main page, then choose the M-P and press the ok key to launch the PTSA calibration page.
- 3. Follow the message prompts, insert the DI blank into the sample vial compartment and press the OK key measure the deionized water.

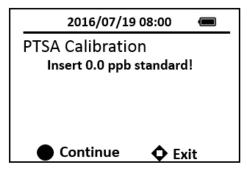


Figure 10

4. Follow the message prompts, and insert the 100-ppb standard into the sample vial compartment and press the OK key to measure the 100-ppb standard.

Figure 11

5. Press the OK key to save the paraments.

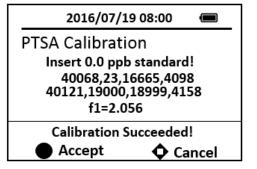


Figure 12

- 6. Press the OK key to save the paraments and return to the main page
 The 100-ppb standard solution shall be stored in a brown or black opaque
 bottle. Exposing the PTSA standard to light will cause the standard losing the
 PTSA concentration. Many substances, such as quaternary amine cause a
 negative interference. Many other substances such laundry detergents that
 contain optical brightener will cause a significant positive interference.
- 7. If calibration fails, the followings should be checked:
 - The DI blank is being contaminated.
 - The 100 ppb PTSA standard solution is decayed or being contaminated.
 - The light shield cover is not in the closing position.
 - The sample vial compartment is blocked with debris, water, or other materials.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 Hydrochloric Acid Solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3

seconds will wake up the instrument, and return to the original page if it has any measurement data.

3. Turbidity

Test Program

Description: SP-910 Turbidity Method (1.0 - 200.0 NTU)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial

Program:

1. Press OK key on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups the main menu options.

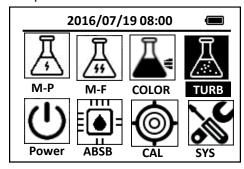


Figure 13

- 2. Move the cursor to TURB icon using the navigational (left, right, up, or down) keys.
- 3. Fill the 10 ml sample vial with the test solution and tightly cap the sample vial. Swirl the vial. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 4. Place the sample vial into the sample vial compartment and slide the light shield cover to the closed position.

Note: Mix the sample well before transferring it to the sample vial compartment.

- 5. Press the OK key in the main page. Pyxis SP-910 will start to measure the Turbidity concentration in the sample.
- 6. Pyxis SP-910 will display the Turbidity concentration in NTU as turbidity.

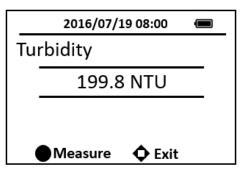


Figure 14

Notes:

- 1. <u>Collect samples in clean plastic or glass bottles. Analyze samples as soon as possible. Store samples up to 48 hours by cooling to 4°C (39 °F). Analyze the sample at the same temperature as it was collected.</u>
- 2. <u>If the sample contains air bubbles, tap the sample vial gently to remove the bubbles before placing the sample vial to sample vial compartment.</u>

Turbidity calibration

- 1. Deionized water (DI) as the blank calibration solution and the 50NTU /200NTU formazan calibration standard solution are needed.
- 2. Press the CAL on the main page, then choose the turbidity and press the OK key to launch the turbidity calibration page.
- 3. Follow the message prompts, insert the DI blank into the sample vial compartment and press the OK key to measure the deionized water.

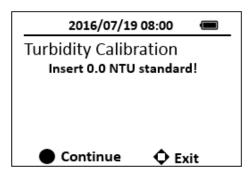


Figure 15

4. Follow the message prompts, and insert the 50 NTU formazan standard into the sample vial compartment and press the OK key to measure the 50 NTU standard.

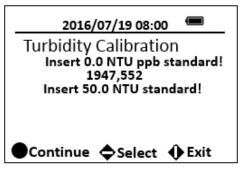


Figure 16

5. Press the OK key to continue high range turbidity calibration. If high range turbidity calibration not required, press any keys to exit.

Figure 17

- 6. Fill the 10 ml sample vial to above 10 ml mark with the 200 NTU formazan standard. Insert the sample vial to the sample vial compartment.
- 7. Press the OK key to measure the 200 NTU standard. High range turbidity calibration is successful.

Figure 18

- 8. Press any keys to exit.
- 9. If calibration fails, the followings should be checked:
 - The DI blank is being contaminated.
 - The 50 NTU/200NTU formazan standard solution is decayed or being contaminated.
 - The light shield cover is not in the closing position.
 - The sample vial compartment is blocked with debris, water, or other materials.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

4. Aluminum - AL

Test Program

Description: SP-910 Aluminum Method (0.02 - 0.80 ppm AL) (Aluminon Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2 10-ml Sample Vial
- 3. 25-ml Sample Vial
- 4. 50-ml Graduated Mixing Cylinder
- 5. Hach Aluminum Reagent (Cat. No.22420-00) Includes:
 - (1) AluVer 3 Aluminum Reagent Powder Pillow (Cat. No.14290-99)
 - (2) Ascorbic Acid Powder Pillow (Cat. No.14577-99)
 - (3) Bleaching 3 Reagent Powder Pillow (Cat. No.14294-49)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. on the main page, the screen will display eight major feature groups.

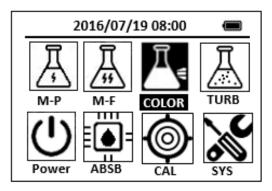
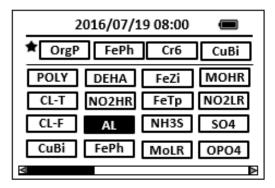



Figure 19

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **AL** icon.

3. Press the OK key to enter AL test program interface.

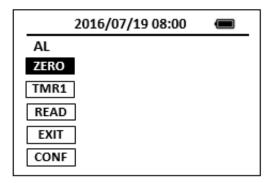


Figure 21

- 4. Fill a 50-ml graduated mixing cylinder to the 50-ml mark with sample.

 Note: Rinse cylinder with 1:1 Hydrochloric Acid and deionized water before use
 to avoid errors due to contaminants absorbed on the glass.

 Note: Sample temperature must be 20-25 °C (68-77 °F) for accurate results.
- 5. Add the contents of one Ascorbic Acid Powder Pillow to the graduated mixing cylinder. Swirl the vial to mix the reagent.
- 6. Add the contents of one AluVer® 3 Aluminum Reagent Powder Pillow to the graduated mixing cylinder. Swirl the vial to mix the reagent.

Note: A red-orange color develops if aluminum is present.

Note: Inconsistent results will occur if any powder is undissolved.

- 7. Press the **ZERO** key.
- 8. Press the **TMR1** Key to start the method timer, a 1-minute reaction period will begin. Invert the cylinder repeatedly for the one minute.

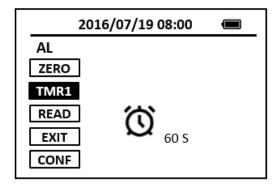


Figure 22

- 9. When the timer reaches the preset time and the reaction is complete, the timer beeps.
- 10. Pour 10 ml of mixture in the cylinder into a 10-ml sample vial (the prepared sample).

Note: There is 40 ml remaining solution in the graduated mixing cylinder.

11. Pour 25 ml of mixture in the cylinder into a 25-ml sample vial.

12. Add the contents of one Bleaching 3 Reagent Powder Pillow to 25-ml sample vial. Stopper the cylinder.

Note: There is 15 ml remaining solution in the graduated mixing cylinder.

13. Press the **TMR2** key to start the method timer, a thirty-second reaction period will begin. vigorously shake the cylinder for the 30-second period.

Note: This solution should turn a light to medium orange upon bleaching. It will not become colorless.

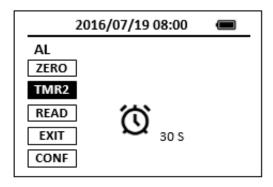


Figure 23

14. Press the **TMR3** Key to start the method timer, a 15-minute reaction period will begin.

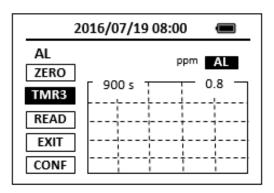


Figure 24

- 15. When the timer reaches the preset time and the reaction is complete, after the timer beeps, the cursor will automatically switch to **EXIT** Key. Press the OK Key to the icon menu-assisted.
- 16. Pour 10 ml of mixture in the 25-ml sample vial into a 10-ml sample vial (the blank sample).
- 17. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 18. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** Key.
- 19. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** Key.

20. Concentration value based on the last absorbance value measured will be calculated and displayed. Pyxis SP-910 will display the page.

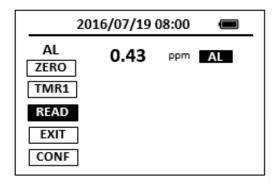


Figure 25

21. Press **EXIT** Key to return to the main page.

The method is compatible with HACH 8012

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK Key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

5. Alkalinity, Total, Low Range - ALKLR

Test Program

Description: SP-910 Alkalinity Total Low Range Method (5-100 ppm as CaCO3)

(Bromophenol Blue Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis ALK Reagent (PN: 31068) Includes:
 - (1) ALK-1
 - (2) ALK-2

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups

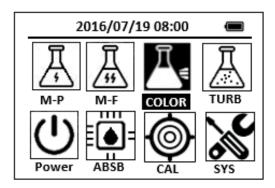


Figure 26

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **ALKLR** icon.

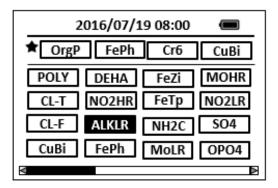


Figure 27

3. Press the OK key to enter **ALKLR** test program interface.

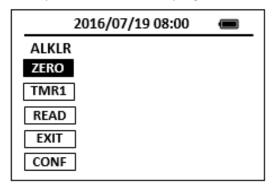


Figure 28

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Fill another sample vial to the 10-ml line with sample (the prepared sample).
- 6. Add 1 ml of ALK-1 reagent to each vial. Cap the vials and invert to mix.
- 7. Add 1 ml of ALK -2 reagent to each vial. Cap the vials and invert to mix.
- 8. Press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

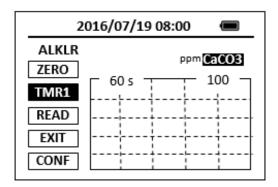


Figure 29

- 9. Press the **TMR1** key to start the method timer, a 1-minute reaction period will begin.
- 10. When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to EXIT key. Press the OK key to the icon menu-assisted.
- 11. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 12. Place the prepared blank into the Pyxis SP-910 sample vial compartment.

 Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 13. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 14. Concentration value based on the last absorbance value measured will be calculated and displayed. Pyxis SP-910 will display the page.

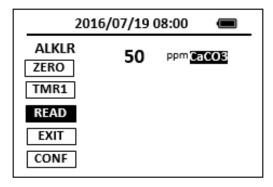


Figure 30

15. Press **EXIT** key to return to the main page.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with</u> deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK Key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.
- 5. Press the CONF key in the method result page to launch the method setup and

6. Alkalinity, Total, High Range - ALKHR

Test Program

Description: SP-910 Alkalinity Total High Range Method (100-500 ppm as CaCO3)

(Bromophenol Blue Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 4. Pyxis ALK Reagent (PN: 31068) Includes:
 - (1) ALK-1
 - (2) ALK-2

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

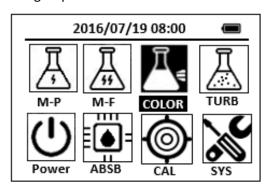


Figure 31

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **ALKHR** icon.

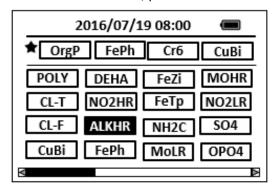


Figure 32

3. Press the OK key to enter **ALKHR** test program interface.

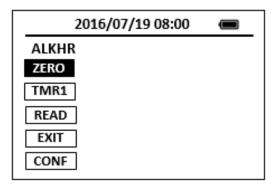


Figure 33

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Fill another sample vial to the 10-ml line with sample (the prepared sample).
- 6. Add 1 ml of ALK-1 reagent to each vial. Cap the vials and invert to mix.
- 7. Add 1 ml of ALK -2 reagent to each vial. Cap the vials and invert to mix.
- 8. Press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

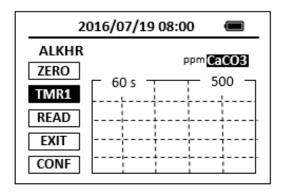


Figure 34

- 9. Press the **TMR1** key to start the method timer, a 1-minute reaction period will begin.
- 10. When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 11. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 12. Place the prepared blank into the Pyxis SP-910 sample vial compartment. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 13. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 14. Concentration value based on the last absorbance value measured will be calculated and displayed.

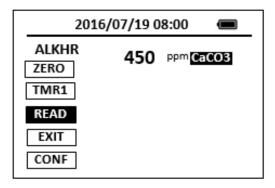


Figure 35

15. Press **EXIT** key to return to the main page.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK Key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

7. Benzotriazole/Tolyltriazole - AZOL

Test Program

Description: SP-910 AZOL Method (0.7-16.0 ppm BENZO or TOLY) (UV Photolysis Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Ultraviolet (UV) lamp,115V,60HZ
- 4. UV Safety Goggles
- 5. 25-ml Sample Vial
- 6. HACH Triazole Reagent Powder Pillows (Cat. No. 21412-99)

Program:

- 1. Fill a sample vial to the 25-ml mark with sample

 Note: Sample temperature should be between 20-25 °C (68-77 °F).

 Note: If sample contains nitrite or borax (sodium borate), adjust the pH to between 4 and 6 with 1 N sulfuric acid.
- 2. Add the one Triazole Reagent Powder Pillow to the 25-ml sample vial Swirl to dissolve completely.
 - Note: If the sample contains more than 500 mg/L hardness (as CaCO3), add 10 drops of Rochelle Salt Solution.
- 3. Insert the ultraviolet (UV) lamp into the 25-ml sample vial.
 - Note: Wear UV safety goggles while the lamp is on.
 - Note: Do not handle the lamp surface. Fingerprints will etch the glass. Wipe lamp with a soft, clean tissue between samples.
 - Note: A specially designed cord adapter is available for performing two digestions with a single power supply. A second UV lamp is required.
- 4. Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

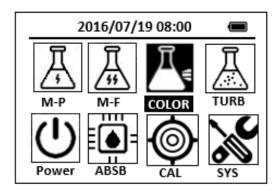


Figure 36

5. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **AZOL** icon.

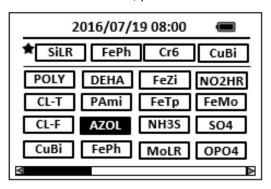


Figure 37

6. Press the OK key to enter **AZOL** test program interface.

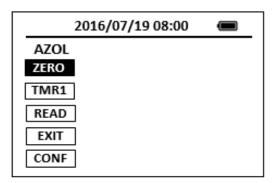


Figure 38

7. Press the **ZERO** key.

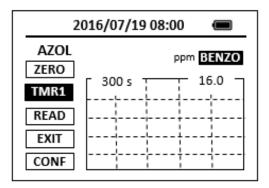


Figure 39

- 8. Turn on the UV lamp to digest the sample.
- 9. Press the **TMR1** Key to start the method timer, a 5-minute reaction period will begin.
 - Note: A yellow color will form if triazole is present.
- 10. When the timer beeps, turn off the UV lamp. Remove it from the sample vial.
- 11. Pour 10 ml of sample from the 25-ml sample vial into a second sample vial. This is the prepared sample.

Note: Low results will occur if photolysis (lamp ON) takes place for more or less than five minutes.

Note: Avoid handling the quartz surface of the lamp. Rinse the lamp and wipe with a soft, clean tissue between tests.

- 12. Fill a sample vial to the 10-ml mark with sample (the blank sample).
- 13. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 14. Place the prepared blank into the Pyxis SP-910 sample vial compartment. Repeat step 5, and press the **ZERO** Key.
- 15. Place the prepared sample into the sample vial compartment and press the **READ** Key.
- 16. Concentration value based on the last absorbance value measured will be calculated and displayed.

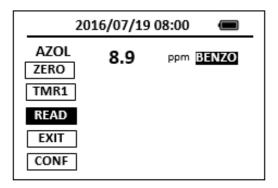


Figure 40

17. Press EXIT Key to return to the main page.

The method is compatible with HACH 8079

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.

4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

8. Bleach - BLCH

Test Program

Description: SP-910 Bleach Method (0.50-16.0 percent) (Direct Reading Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial

Program:

 Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

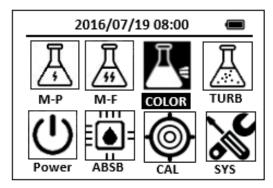


Figure 41

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **BLCH** icon.

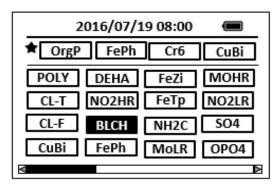


Figure 42

3. Press the OK key to enter the temperature input interface. Enter the temperature of the sample.

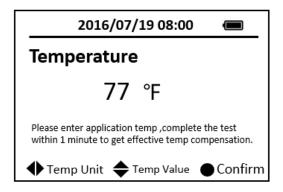


Figure 43

4. Press the OK key to enter **BLCH** test program interface.

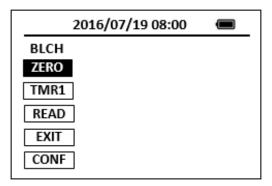


Figure 44

- 5. Fill a sample vial to the 10-ml line with deionized water (the blank sample).

 Note: Analyze samples immediately after collection.
- 6. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

Figure 45

- 7. Fill a sample vial to the 10-ml line with sample (the prepared sample).
- 8. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 9. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 10. Concentration value based on the last absorbance value measured will be calculated and displayed. Pyxis SP-910 will display the page.

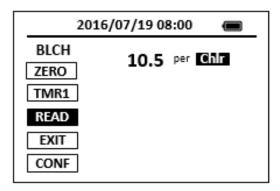


Figure 46

11. Press **EXIT** key to return to the main page.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

9. Bleach - BLCHL

Test Program

Description: SP-910 Bleach Method (0.015-1.5percent) (Direct Reading Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial

Program:

 Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

Figure 47

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **BLCHL** icon.

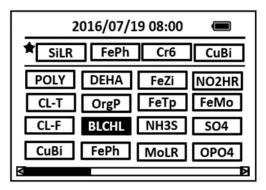


Figure 48

3. Press the OK key to enter the temperature input interface. Enter the temperature of the sample.

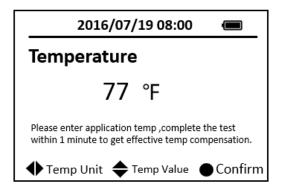


Figure 49

4. Press the OK key to enter **BLCHL** test program interface.

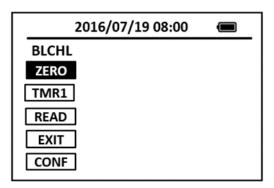


Figure 50

- 5. Fill a sample vial to the 10-ml line with deionized water (the blank sample). *Note: Analyze samples immediately after collection.*
- 6. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

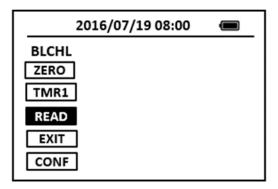


Figure 51

- 7. Fill a sample vial to the 10-ml line with sample (the prepared sample).
- 8. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 9. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 10. Concentration value based on the last absorbance value measured will be calculated and displayed. Pyxis SP-910 will display the page.

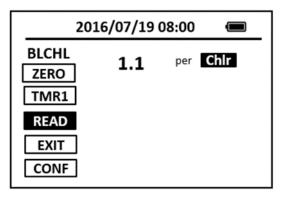


Figure 52

11. Press **EXIT** key to return to the main page.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

10.Bromine - Br-T

Test Program

Description: SP-910 Total Bromine Method (0.04-4.50 ppm Br2) (DPD Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH DPD Total Chlorine Reagent Powder Pillows (Cat. No. 21056-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

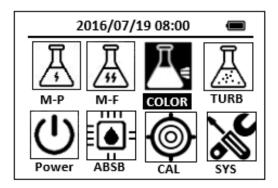


Figure 53

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **Br-T** icon.

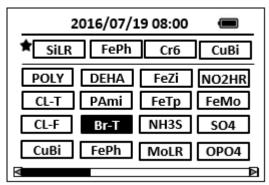


Figure 54

3. Press the OK key to enter **Br-T** test program interface.

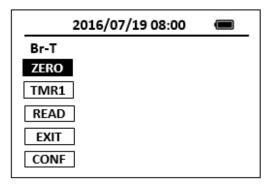


Figure 55

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: Samples must be analyzed immediately and cannot be preserved for later analysis.
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

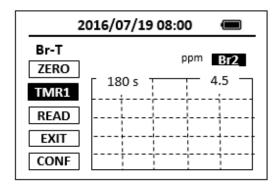


Figure 56

- 6. Take the sample vial out and add the contents of one DPD Total Chlorine Powder Pillow to the sample vial. Swirl the vial to mix the reagent.

 Note: It is not necessary that all the powder dissolves. A pink color will develop if bromine is present.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

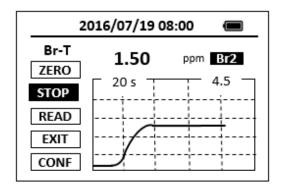


Figure 57

10. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the STOP key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8016

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

11.Calcium - Ca

Test Program

Description: SP-910 Calcium Method (0.08-4.0 ppm Ca as CaCO3) (Calmagite Colorimetric Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial (SP-910 accessory, 10 ml sample vial)
- 3. 100-ml graduated mixing cylinder
- 4. HACH Hardness Reagent Set (Cat. No. 23199-00) Includes:
 - (1) Alkali Solution for Calcium and Magnesium Test (Cat. No. 22417-32)
 - (2) Calcium and Magnesium Indicator Solution (Cat. No. 22418-32)
 - (3) EDTA Solution (Cat. No. 22419-26)
 - (4) EGTA (Cat. No. 22297-26)

Program:

1. Press OK Key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

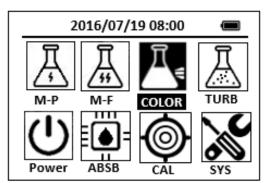


Figure 58

2. Position the cursor to **COLOR** icon by navigation Keys and press the OK Key to enter COLOR selection interface, position the cursor to **Ca** icon.

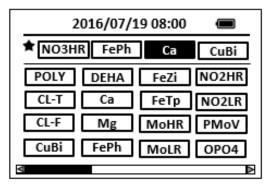


Figure 59

3. Press the OK Key to enter **Ca** test program interface.

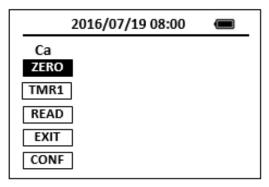


Figure 60

- 4. Pour 100 ml of sample into a 100-ml graduated mixing cylinder. Note: The sample temperature should be 21-29 °C (70-84 °F).
- 5. Add 1.0 ml of Calcium and Magnesium Indicator Solution using a 1.0-mlmeasuring dropper. Stopper. Swirl the vial to mix the reagent.
- Add 1.0 ml of Alkali Solution for Calcium and Magnesium Test using a 1.0-ml measuring dropper. Stopper. Swirl the vial to mix the reagent.
 Note: If the sample turns read after adding Alkali Solution, dilute sample 1:1 and repeat analysis.
- 7. Pour 10 ml of the solution into each of two sample vials.

 Note: The test will detect any calcium or magnesium contamination in the mixing cylinder, measuring droppers or sample vials. To test cleanliness, repeat the test multiple times until you obtain consistent results.
- 8. Select one sample vial as prepared sample.
- 9. Add one drop of EGTA Solution to another vial (the blank sample). Stopper. Swirl the vial to mix the reagent.
- 10. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** Key to zero the instrument. Pyxis SP-910 will display the page.

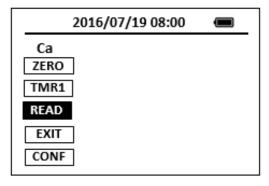


Figure 61

- 11. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** Key.
- 12. A new concentration value based on the last absorbance value measured will be calculated and displayed.

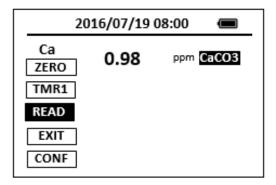


Figure 62

13. Press **EXIT** Key to return to the main page.

The method is compatible with HACH 8030

Notes:

- 1. <u>The center key is the OK key. Press the OK key on a selected item to launch the action</u> associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 Hydrochloric Acid Solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK Key for 3 seconds

will wake up the instrument, and return to the original page if it has any measurement data.

12. Calcium Hardness - CaHR

Test Program

Description: SP-910 Calcium Hardness (25-500 ppm Ca as CaCO3) (Murexide Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis CaHR Reagent (PN: 31073)

Includes:

- (1) CaHR-1
- (2) CaHR-2

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.



Figure 63

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CaHR** icon.

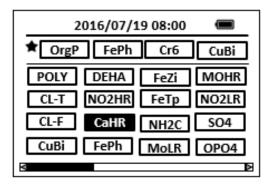


Figure 64

3. Press the OK key to enter **CaHR** test program interface.

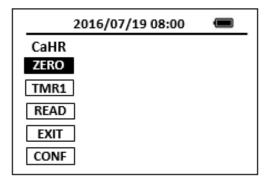


Figure 65

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Fill another sample vial to the 10-ml line with sample (the prepared sample).
- 6. Add the content of CaHR-1 reagent to each vial. Cap the vials and invert to mix.
- 7. Add the content of CaHR-2 reagent to each vial. Cap the vials and invert to mix.
- 8. Press the **ZERO** key. Pyxis SP-910 will display the page.

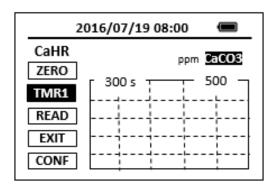


Figure 66

9. Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.

- 10. When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to EXIT key.
 Press the OK key to the icon menu-assisted.
- 11. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 12. Place the prepared blank into the Pyxis SP-910 sample vial compartment. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 13. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 14. Concentration value based on the last absorbance value measured will be calculated and displayed.

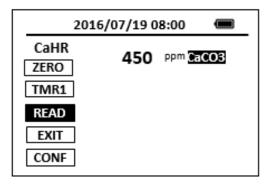


Figure 67

15. Press **EXIT** key to return to the main page.

Notes:

- 1. <u>The center key is the OK key. Press the OK key on a selected item to launch the action</u> associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 Hydrochloric Acid Solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity,
 except for during a measurement. Pressing and holding the OK Key for 3 seconds
 will wake up the instrument, and return to the original page if it has any
 measurement data.

13. Hardness, Total, Ultra-Low Range - CaMgL

Test Program

Description: SP-910 Hardness, Total, Ultra-Low Range Method (0.008-1 ppm Ca & Mg as CaCO3)

(Chlorophosphonazo Colorimetric Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 25-ml Plastic Vial
- 4. ULR Hardness Reagent Set (Cat. No. 26031-01) Includes:
 - (1) Chlorophosphonazo Indicator Solution Pillows (Cat. No. 25895-49)
 - (2) CDTA Solution (Cat. No. 25896-36)

Program:

1. Press OK Key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

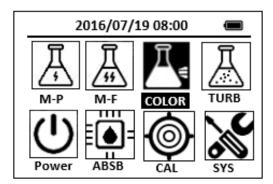


Figure 68

2. Position the cursor to **COLOR** icon by navigation Keys and press the OK Key to enter COLOR selection interface, position the cursor to **CaMgL** icon.

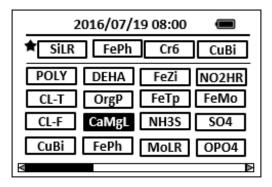


Figure 69

3. Press the OK key to enter **CaMgL** test program interface.

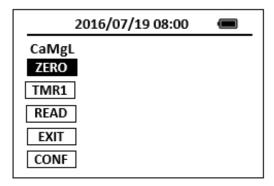


Figure 70

- 4. Rinse a plastic vial and the cap three times with the water to be tested. Do not allow the underside of the cap to come in contact with surfaces that may contaminate it.
 - *Note: Plastic vials must be used. Glass will contaminate the sample.*
- 5. Fill a plastic vial to the 25-ml line with sample.
- 6. Add 1ml of Chlorophosphonazo Indicator Solution to the sample vial (the 25-ml blank sample). Cap the vial and invert to mix.
- 7. Fill another plastic vial to the 25-ml line with sample.
- 8. Add 1ml of Chlorophosphonazo Indicator Solution to the sample vial. Cap the vial and invert to mix. Add one drop of CDTA Solution to the sample vial (the 25-ml prepared sample). Cap the vial and invert to mix.
- 9. Measure 10 ml of 25-ml blank sample into 10-ml sample vial as the blank sample.
- 10. Measure 10 ml of 25-ml prepared sample into 10-ml sample vial as the prepared sample.
- 11. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

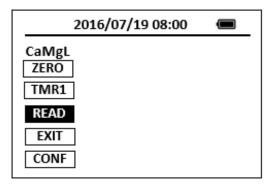


Figure 71

12. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.

Note: Complete steps 12-13 within 1-2 minutes.

13. Concentration value based on the last absorbance value measured will be calculated and displayed. Pyxis SP-910 will display the page.

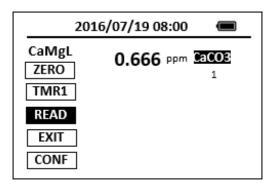


Figure 72

14. Press **EXIT** key to return to the main page.

The method is compatible with HACH 8374

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 Hydrochloric Acid Solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.

4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity,
except for during a measurement. Pressing and holding the OK Key for 3 seconds
will wake up the instrument, and return to the original page if it has any
measurement data.

14.Oxygen Demand, Chemical (Reactor Digestion 20 Minutes Method) - CODLR/CODHR

Test Program

Minutes Method)

Description: SP-910 COD Method (15-150 ppm/100-1500 ppm COD) (Reactor Digestion 20

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. Pyxis RD-910 Reactor
- 3. Blender, 120 V, 14 speed/ Blender, 240 V, 14 speed
- 4. COD/TNT adapter
- HACH CODLR/CODHR Reagent
 Select the appropriate COD Digestion Reagent Vial:
 - Low Range, 0 to 150 mg/L COD (Cat. No. 2038225)
 - High Range, 0 to 1,500 mg/L COD (Cat. No. 2038325)

Program:

- Homogenize 500 ml of sample for 2 minutes in a blender.
 Note: Pour the blended sample into a 250-ml beaker. Stir with a magnetic stirrer while withdrawing a sample aliquot. This improves accuracy and reproducibility
- 2. Turn on the RD-910 Reactor. Preheat to 165 °C.

 Note: See RD-910 user manual for selecting pre-programmed temperature applications.
- 3. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

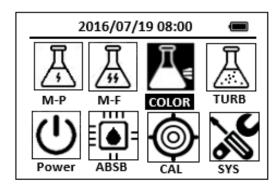


Figure 73

4. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, according to COD digestion reagent vial for the appropriate range, position the cursor to **CODLR** or **CODHR** icon.

Note: The reagent mixture is light-sensitive. Keep unused vials in the opaque shipping container, in a refrigerator if possible. The light striking the vials during the test will not affect results.

Table 1

Sample Conc.	COD Digestion
Range (mg/L)	Reagent Vial Type
15 –150	CODLR
100 -1500	CODHR

Note: Some of the chemicals and apparatus used in this procedure may be hazardous to the health and safety of the user if inappropriately or accidentally misused. Wear appropriate eye protection and clothing. If contact occurs, flush the affected area with running water.

5. Hold the vial at a 45-degree angle. Pipet 2.00 ml of sample into the vial

Note: For greater accuracy analyze a minimum of three replicates and average

the results.

Note: Spilled reagent will affect test accuracy and is hazardous to skin and other materials. Do not run tests with vials which have been spilled. If spills occur, wash with running water

- 6. Replace the vial cap tightly. Rinse the outside of the COD vial with deionized water and wipe the vial clean with a paper towel.
- Hold the vial by the cap and over a sink. Invert gently several times to mix the contents. Place the vial in the preheated RD-910 Reactor.
 - *Note: The vial will become very hot during mixing.*
- 8. Prepare a blank by repeating Steps 4 to 7, substituting 2.00 ml deionized water for the sample.

Note: Be sure the pipet is clean.

Note: One blank must be run with each set of samples. Run samples and blanks with vials from the same lot number (lot # is on the container label)

- 9. Heat the vials for 20 minutes.
- 10. Turn the reactor off. Wait about 20 minutes for the vials to cool to 120 °C or less.
- 11. Invert each vial several times while still warm. Place the vials into a rack. Wait until the vials have cooled to room temperature.

 Note: If a pure green color appears in the reacted sample, measure the COD and, if necessary, repeat the test with a diluted sample.
- 12. Use one of the following analytical techniques to measure the COD:
 - Colorimetric method, 15-150 mg/L COD
 - Colorimetric method, 100-1,500 mg/L COD

Colorimetric Determination, 15 to 150 mg/L COD

Position the cursor to CODLR icon.

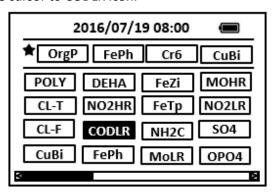


Figure 74

2. Press the OK key to enter CODLR test program interface.

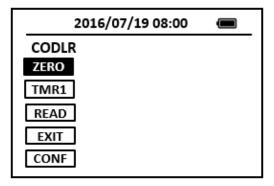


Figure 75

- 3. Insert the COD/TNT adapter into the vial holder. Then push down to fully insert it.

 Note: For increased performance, a diffuser band covers the light path holes on the adapter. Do not remove the diffuser band
- 4. Clean the outside of the blank with a towel.
 - Note: Wiping with a damp towel, followed by a dry one, will remove fingerprints or other marks.
- 5. Place the blank in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 6. Tightly cover the vial with the instrument cap.

 Note: The blank is stable when stored in the dark.
- 7. press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

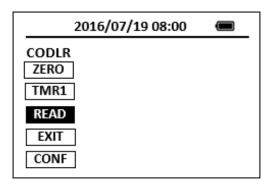


Figure 76

- 8. Clean the outside of the sample vial with a towel.
- 9. Place the sample vial in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 10. Tightly cover the vial with the instrument cap and press the **READ** key.
- 11. Concentration value based on the last absorbance value measured will be calculated and displayed.

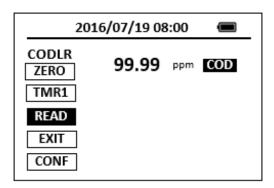


Figure 77

Colorimetric Determination, 100 to 1500 mg/L COD

Position the cursor to CODHR icon.

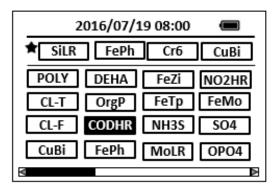


Figure 78

2. Press the OK key to enter CODHR test program interface.

Figure 79

- 3. Insert the COD/TNT adapter into the vial holder. Then push down to fully insert it.

 Note: For increased performance, a diffuser band covers the light path holes on
 the adapter. Do not remove the diffuser band
- 4. Clean the outside of the blank with a towel.

 Note: Wiping with a damp towel, followed by a dry one, will remove fingerprints or other marks.
- 5. Place the blank in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 6. Tightly cover the vial with the instrument cap.
 - Note: The blank is stable when stored in the dark.
- 7. press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

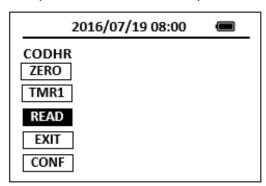


Figure 80

- 8. Clean the outside of the sample vial with a towel.
- 9. Place the sample vial in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 10. Tightly cover the vial with the instrument cap and press the **READ** key.
- 11. Concentration value based on the last absorbance value measured will be calculated and displayed.



Figure 81

The method is compatible with HACH 10259

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity,
 except for during a measurement. Pressing and holding the OK key for 3 seconds
 will wake up the instrument, and return to the original page if it has any
 measurement data.

15. Chloride Low Range - CLLR

Test Program

Description: SP-910 Chloride Low Range Method (2.5-40.0 ppm CL) (Turbidimetric

Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis CLLR Reagent (PN: 31009)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

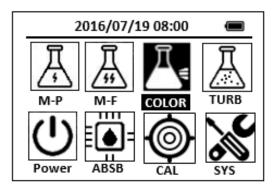


Figure 82

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CLLR** icon.

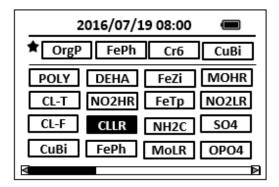


Figure 83

3. Press the OK key to enter **CLLR** test program interface.

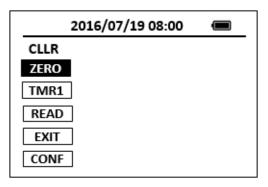


Figure 84

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 6. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key. Pyxis SP-910 will display the page.

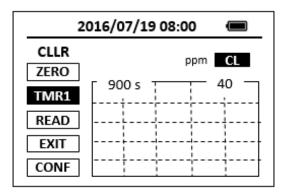


Figure 85

- 7. Take the sample vial out, add 2 ml of CLLR reagent to the sample vial, Cap the vials and invert the sample gently 20 times.
- 8. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 15-minute reaction period will begin.
- 9. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

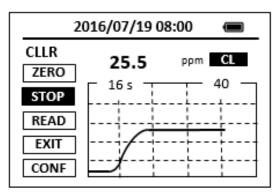


Figure 86

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

16. Chloride Medium Range - CLMR

Test Program

Description: SP-910 Chloride Medium Range Method (40-400 ppm CL) (Turbidimetric Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis CLMR Reagent (PN: 31004)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

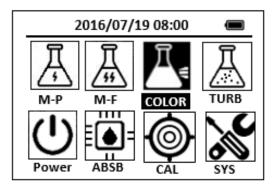


Figure 87

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CLMR** icon.

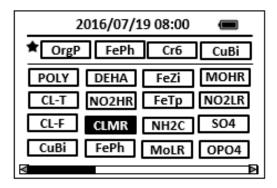


Figure 88

3. Press the OK key to enter **CLMR** test program interface.

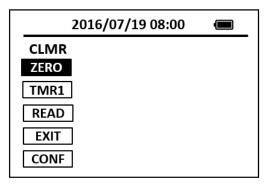


Figure 89

- 4. Fill a sample vial to the 10-ml line with CLMR reagent (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 6. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key. Pyxis SP-910 will display the page.

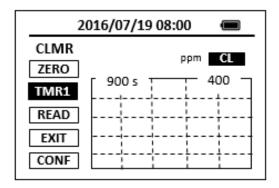


Figure 90

- 7. Take the sample vial out, add 1 ml of sample to the sample vial, Cap the vials and invert the sample gently 20 times.
- 8. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 15-minute reaction period will begin.
- 9. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

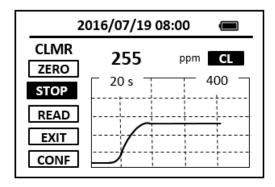


Figure 91

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

17. Chlorine, Total, High Range - CL2HR

Test Program

Description: SP-910 Total Chlorine High Range Method (0.1-10 ppm CL2) (DPD Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH DPD Total Chlorine Reagent Powder Pillows,25-ml (Cat. No. 14064-99)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

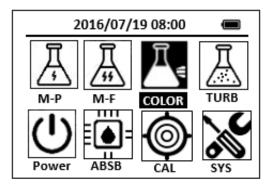


Figure 92

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CL2HR** icon.

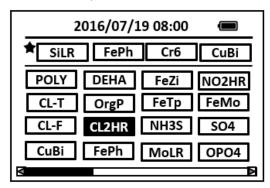


Figure 93

3. Press the OK key to enter CL2HR test program interface.

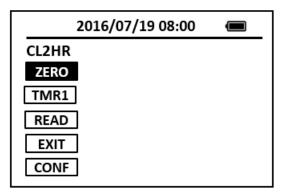


Figure 94

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 6. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key. Pyxis SP-910 will display the page.

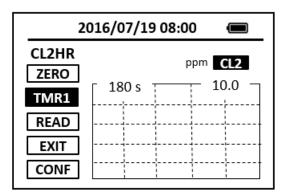


Figure 95

- 7. Take the sample vial out, add the contents of one 25-ml DPD Total Chlorine Reagent pillow to the sample vial, Cap and shake the sample vial about 20 seconds to dissolve.
 - Note: A pink color will develop if chlorine is present.
- 8. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
- Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

Figure 96

The method is compatible with HACH 10070

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

18. Chlorine, Free, High Range - CL2HR

Test Program

Description: SP-910 Free Chlorine High Range Method (0.1-10 ppm CL2) (DPD Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH DPD Free Chlorine Reagent Powder Pillows (Cat. No. 14070-99)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

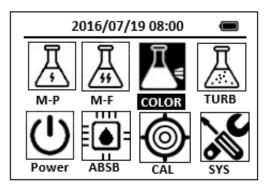


Figure 97

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CL2HR** icon.

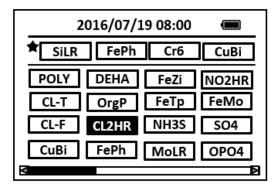


Figure 98

3. Press the OK key to enter **CL2HR** test program interface.

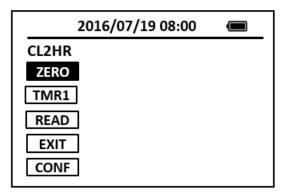


Figure 99

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 6. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key. Pyxis SP-910 will display the page.

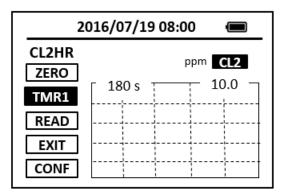


Figure 100

- 7. Take the sample vial out, add the contents of one 25-ml DPD Free Chlorine Reagent pillow to the sample vial, Cap and shake the sample vial about 20 seconds to dissolve.
 - Note: A pink color will develop if chlorine is present.
- 8. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
- Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

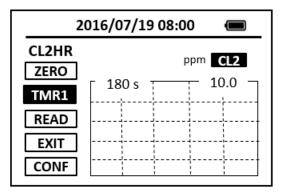


Figure 101

The method is compatible with HACH 10069

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

19. Chlorine, Free, Ultra-High Range - CL2UH

Test Program

Description: SP-910 Free Chlorine Ultra-High Range Method (5-400 ppm CL2) (Iodimetr Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis CL2UH Reagent (PN: 31074)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

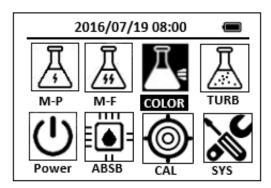


Figure 102

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CL2UH** icon.

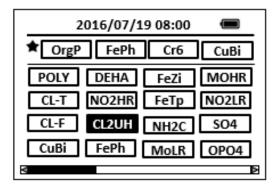


Figure 103

3. Press the OK key to enter **CL2UH** test program interface.

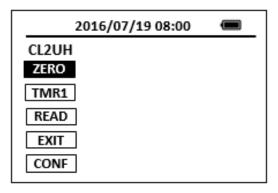


Figure 104

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 6. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key. Pyxis SP-910 will display the page.

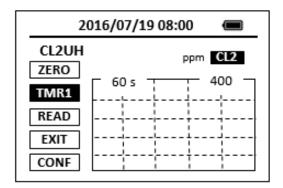


Figure 105

- 7. Take the sample vial out, add the contents of CL2UH reagent to the sample vial, cap and shake the sample vial to dissolve.
- 8. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 1-minute reaction period will begin.
- 9. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

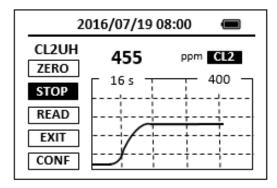


Figure 106

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

20. Chlorine, Free - CL-F

Test Program

Description: SP-910 Free Chlorine Method (0.02-2.20 ppm CL2) (DPD Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH DPD Free Chlorine Powder Pillows (Cat. No. 21055-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

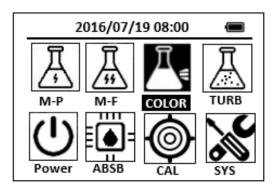


Figure 107

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CL-F** icon.

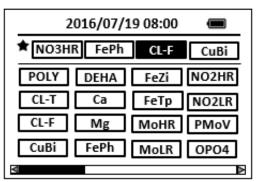


Figure 108

3. Press the OK key to enter **CL-F** test program interface.

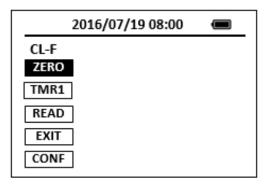


Figure 109

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: Samples must be analyzed immediately and cannot be preserved for later analysis.
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

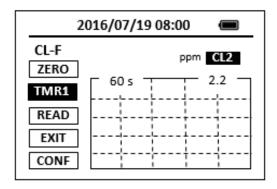


Figure 110

- 6. Take the sample vial out and add the contents of one DPD Free Chlorine Powder Pillow to the sample vial. Swirl the vial to mix the reagent.
 - Note: A pink color will develop if chlorine ion is present.
 - Note: It the sample temporarily turns yellow after sample addition, it is due to high chlorine levels. Dilute a fresh sample and repeat the test.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 1-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

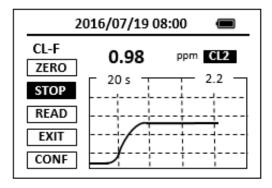


Figure 111

The method is compatible with HACH 8021

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

21. Chlorine, Free - CLTMB

Test Program

Description: SP-910 Free Chlorine Method (0.02-1.20 ppm CL2) (TMB Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis CLTMB Reagent (PN: 31075)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

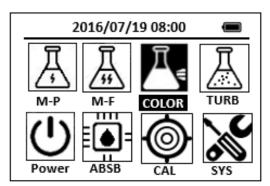


Figure 112

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CLTMB** icon.

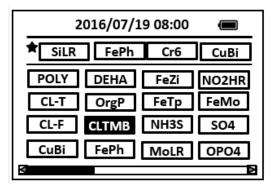


Figure 113

3. Press the OK key to enter **CLTMB** test program interface.

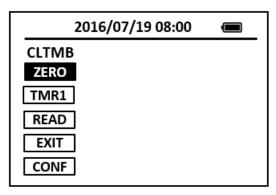


Figure 114

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: Samples must be analyzed immediately and cannot be preserved for later analysis.
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

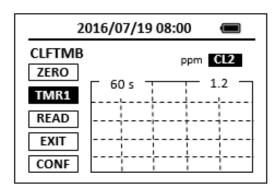


Figure 115

- 6. Take the sample vial out and add the CLTMB reagent to the sample vial. Swirl the vial to mix the reagent.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 1-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

Figure 116

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

22. Chlorine Dioxide - CLO2

Test Program

Description: SP-910 Chlorine Dioxide Method (0.04-5 ppm CLO2) (DPD Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Chlorine Dioxide DPD/Glycine Reagent Set (Cat. No. 27709-00) Includes one of each:
 - (1) DPD Free Chlorine Reagent Powder Pillows (Cat. No. 21055-69)
 - (2) Glycine Reagent

Program:

1. Press OK Key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

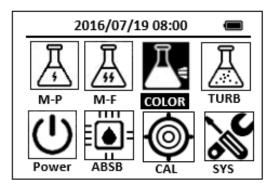


Figure 117

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CLO2** icon.

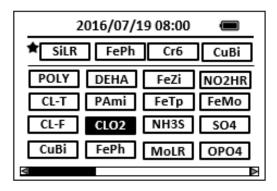


Figure 118

3. Press the OK key to enter **CLO2** test program interface.

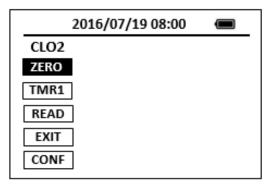


Figure 119

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: Samples must be analyzed immediately and cannot be preserved for later analysis.
 - Note: Wipe off any liquid or fingerprints before inserting the sample vial into the <u>instrument.</u>
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

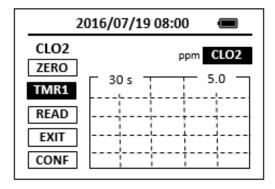


Figure 120

- 6. Take the sample vial out and add four drops of Glycine Reagent to the sample vial. Swirl to mix.
- 7. Add the content of one DPD Free Chlorine Powder Pillow to the sample vial (the prepared sample). Cap the vial and swirl to mix.
 - Note: A pink color will develop if free chlorine dioxide is present.
 - Note: Perform step 8 within one minute of reagent addition.
- 8. Allow 30 seconds for undissolved powder to settle. Place the prepared sample vial back into the sample vial compartment and Press the **READ** key.

 Note: Wipe off any liquid or fingerprints before inserting the sample cell into the
- instrument.9. Concentration value based on the last absorbance value measured will be

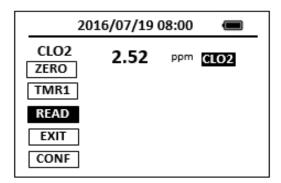


Figure 121

10. Press **EXIT** Key to return to the main page.

calculated and displayed.

The method is compatible with HACH 10126

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

5. Press the CONF key in the method result page to launch the method setup and calibration page. Press the UNIT key to select a concentration unit among the list of ppb, ppm, mg/L, and ug/L.

23. Chlorine Dioxide Direct Read Medium Range - CLO2D

Test Program

Description: SP-910 Chlorine Dioxide Direct Read Medium Range Method (7.3-50.0 ppm CLO2) (Direct Reading Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial

Program:

1. Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

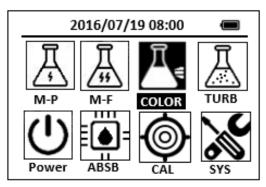


Figure 122

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CLO2D** icon.

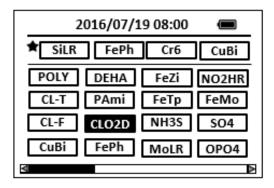


Figure 123

3. Press the OK key to enter CLO2D test program interface.

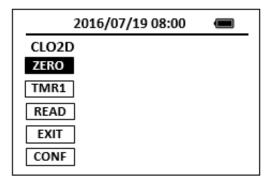


Figure 124

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample). *Note: Analyze samples immediately after collection.*
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

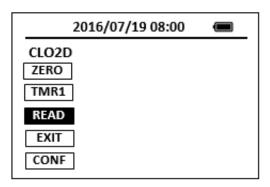


Figure 125

- 6. Fill a sample vial to the 10-ml line with sample (the prepared sample).
- 7. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 8. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 9. Concentration value based on the last absorbance value measured will be calculated and displayed.

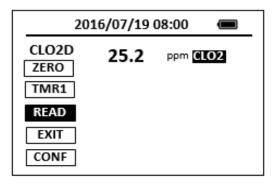


Figure 126

10. Press **EXIT** key to return to the main page.

The method is compatible with HACH 8345

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

24. Chlorine Dioxide Direct Read High Range - CLO2H

Test Program

Description: SP-910 Chlorine Dioxide Direct Read High Range Method (200-1500 ppm CLO2)

(Direct Reading Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial

Program:

1. Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

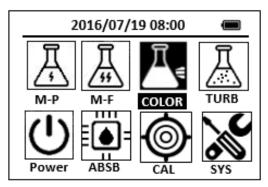


Figure 127

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CLO2H** icon.

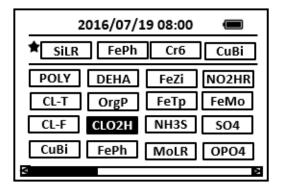


Figure 128

3. Press the OK key to enter **CLO2H** test program interface.

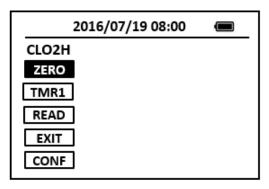


Figure 129

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample). *Note: Analyze samples immediately after collection.*
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

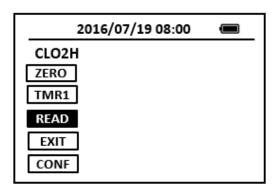


Figure 130

- 6. Fill a sample vial to the 10-ml line with sample (the prepared sample).
- 7. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 8. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 9. Concentration value based on the last absorbance value measured will be calculated and displayed.

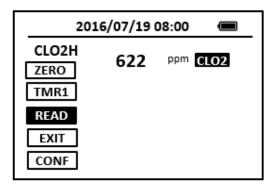


Figure 131

10. Press **EXIT** key to return to the main page.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

25. Chlorine, Total - CL-T

Test Program

Description: SP-910 Total Chlorine Method (0.02-2.20 ppm CL2) (DPD Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH DPD Total Chlorine Reagent Powder Pillows (Cat. No. 21056-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

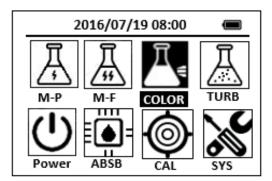


Figure 132

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CL-T** icon.

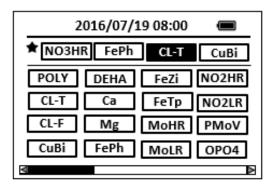


Figure 133

3. Press the OK key to enter **CL-T** test program interface.

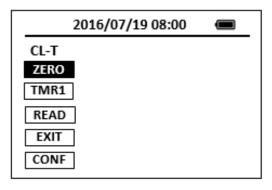


Figure 134

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: Samples must be analyzed immediately and cannot be preserved for later analysis.
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

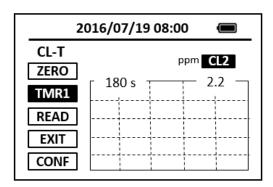


Figure 135

- 6. Take the sample vial out and add the contents of one DPD Total Chlorine Powder Pillow to the sample vial. Swirl the vial to mix the reagent.
 - Note: It is not necessary that all the powder dissolves.
 - Note: A pink color will develop if chlorine ion is present.
 - Note: It the sample temporarily turns yellow after sample addition, it is due to high chlorine levels. Dilute a fresh sample and repeat the test.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time

9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

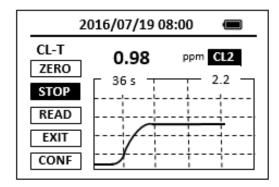


Figure 136

10. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the STOP key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8167

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

26. Cyanide - CN

Test Program

Description: SP-910 Cyanide Method (0.008 – 0.240 ppm CN) (Pyridine-Pyrazalone Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Cyanide Reagent Set (Cat. No. 24302-00) Includes:
 - (1) CyaniVer 3 Cyanide Reagent Powder Pillows (Cat. No. 21068-69)
 - (2) CyaniVer 4 Cyanide Reagent Powder Pillows (Cat. No. 21069-69)
 - (3) CyaniVer 5Cyanide Reagent Powder Pillows (Cat. No. 21070-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

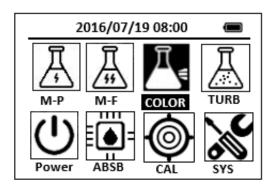


Figure 137

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CN** icon.

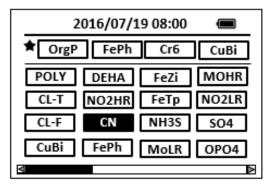


Figure 138

3. Press the OK key to enter **CN** test program interface.

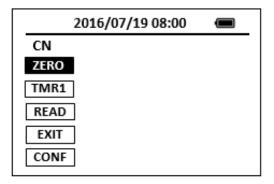


Figure 139

- 4. Fill a sample vial to the 10-ml line with sample.

 Note: Samples at less than 23 °C require a longer reaction time and samples at greater than 25 °C give low test results. Sample temperature must be 23-25 °C.
- 5. Add the contents of one CyaniVer 3 Cyanide Reagent Powder Pillow to the sample vial, Cap the vial and invert repeatedly to mix.
- 6. Press the **ZERO** key. Pyxis SP-910 will display the page.

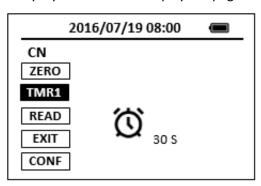


Figure 140

- 7. Press the **TMR1** key to start the method timer, a 30-second reaction period will begin. Shake the sample vial for the 30 seconds.
- 8. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **TMR2** key.

9. Press the **TMR2** key to start the method timer, a 30-second reaction period will begin. Let the sample vial sit undisturbed for this 30-second period.

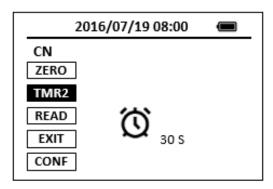


Figure 141

- 10. After the timer beeps, add the contents of one CyaniVer 4 Cyanide Reagent Powder Pillow. Swirl the vial to mix the reagent.
- 11. Shake the sample vial for ten seconds. Immediately proceed with Step 1

 Note: Delaying the addition of the CyaniVer 5 Cyanide Reagent Powder for more

 than 30 seconds after the addition of the CyaniVer 4 Cyanide Reagent Powder will

 give lower test results.

Note: Accuracy is not affected by undissolved CyaniVer 4 Cyanide reagent powder.

- 12. Add the contents of one CyaniVer 5 Cyanide Reagent Powder Pillow to the sample vial, Cap the vial and invert repeatedly to mix.
- 13. Shake vigorously to completely dissolve the *CyaniVer 5 Cyanide* Reagent Powder (the prepared sample).
- 14. Press the TMR3 key to start the method timer, a 30-minute reaction period will begin.

Note: If cyanide is present, a pink color will develop which then turns blue after a few minutes.

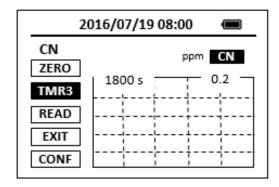


Figure 142

- 15. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **EXIT** key.
- 16. Fill another sample vial to the 10-ml line with sample (the blank sample).
- 17. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 18. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 19. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 20. Concentration value based on the last absorbance value measured will be calculated and displayed.

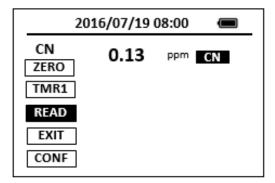


Figure 143

21. Press **EXIT** key to return to the main page.

The method is compatible with HACH 8027

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

27. Color, True and Apparent - COLOR

Test Program

Description: SP-910 Color, True and Apparent Method (25-500 units) (APHA Platinum-Cobalt

Standard Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Aspirator, vacuum
- 4. Filter Holder, 47 mm, 300 ml graduated
- 5. Filter, membrane, 47 mm, 0.45 microns
- 6. Flask, filtering, 500 ml
- 7. Stopper, No. 7, one hole

Program:

1. Assemble the filtering apparatus (membrane filter, filter holder, filter flask, and aspirator).

Note: To test for apparent color, do not filter; begin at Step 4 and skip Step 5

- 2. Rinse the filter by pouring about 50 ml of deionized water through the filter. Discard the rinse water.
- 3. Pour another 50 ml of deionized water through the filter. Keep this for Step 4.
- 4. Fill a sample vial (the blank) with 10 ml of filtered deionized water. Discard the excess.

Note: For apparent color use unfiltered deionized water.

- 5. Pour about 50 ml of sample through the filter.
- 6. Fill a second sample vial (the prepared sample) with 10 ml of the filtered sample.
- 7. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

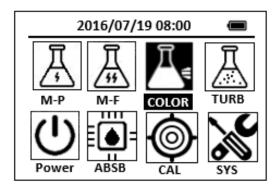


Figure 144

8. Position the cursor to **COLOR** icon by navigation Keys and press the OK Key to enter COLOR selection interface, position the cursor to **COLOR** icon.

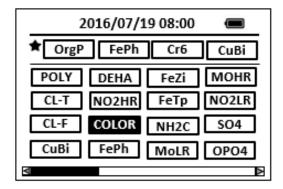


Figure 145

9. Press the OK key to enter COLOR test program interface.

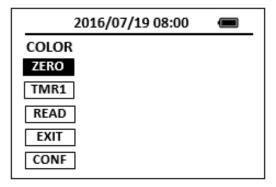


Figure 146

10. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO key to zero the instrument. Pyxis SP-910 will display the page.

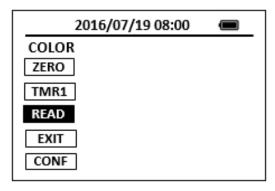


Figure 147

- 11. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 12. Concentration value based on the last absorbance value measured will be calculated and displayed.

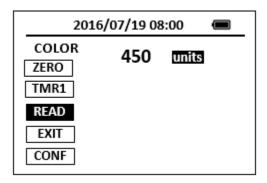


Figure 148

13. Press **EXIT** key to return to the main page.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

28. Chromium, Hexavalent - Cr6

Test Program

Description: SP-910 Chromium Hexavalent Method (0.01-0.60 ppm Cr6+) (1,5-

Diphenylcarbohydrazide Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH ChromaVer 3 Chromium Reagent Powder Pillows (Cat.No.12710-99)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

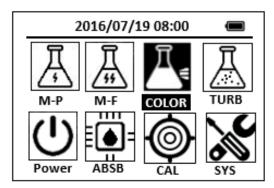


Figure 149

2. Position the cursor to **COLOR** icon by navigation Keys and press the OK Key to enter COLOR selection interface, position the cursor to **Cr6** icon.

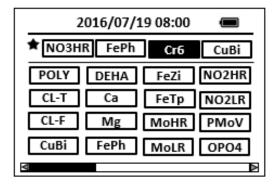


Figure 150

3. Press the OK key to enter **Cr6** test program interface.

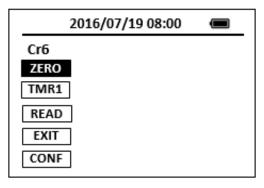


Figure 151

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

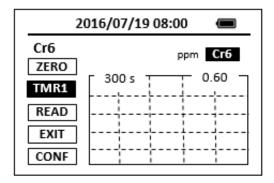


Figure 152

- 6. Take the sample vial out and add the ChromaVer 3 Reagent Powder Pillow to the sample vial. Swirl the vial to mix the reagent.
 - Note: A purple color will form if Cr6+ is present.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

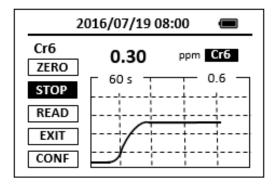


Figure 153

10. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8023

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity,
 except for during a measurement. Pressing and holding the OK key for 3 seconds
 will wake up the instrument, and return to the original page if it has any
 measurement data.

29. Chromium, Total - CrT

Test Program

Description: SP-910 Total Chromium Method (0.01-0.60 ppm Cr6) (Alkaline Hypobromite Oxidation Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 25-ml Graduated Mixing Cylinder
- 4. HACH Total Chromium Reagent (Cat. No. 22425-00) Includes:
 - (1) Acid Reagent Powder Pillows (Cat. No. 2126-99)
 - (2) ChromaVer 3 Chromium Reagent Powder Pillows (Cat. No. 12066-99)
 - (3) Chromium 1 Reagent Powder Pillows (Cat. No. 2043-99)
 - (4) Chromium 2 Reagent Powder Pillows (Cat. No. 2044-99)

Program:

1. Press OK Key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

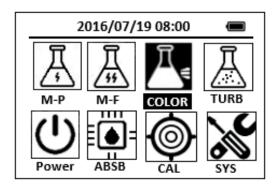


Figure 154

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CrT** icon.

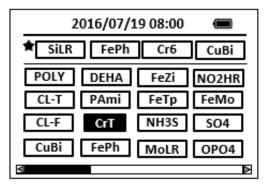


Figure 155

3. Press the OK key to enter CrT test program interface.

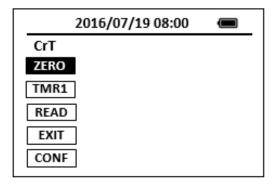


Figure 156

- 4. Fill a clean 25-ml sample vial with 25 ml of sample.

 Note: Adjust the pH to 2 or lower with nitric acid before analysis.
- 5. Add the contents of one Chromium 1 Reagent Powder Pillow (the prepared sample). Cap the vial and invert repeatedly to mix. Remove the cap.
- 6. Place the prepared sample into a boiling water bath.
- 7. Press the **ZERO** key. Pyxis SP-910 will display the page.

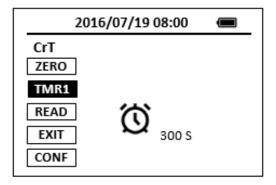


Figure 157

8. Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.

- 9. When the timer reaches the preset time and the reaction is complete, the timer beeps. the cursor will automatically switch to **TMR2** Key.
- 10. Remove the prepared sample. Cap the vial. Use running tap water to cool the vial to 25 °C.
 - Note: Use finger cots to handle the hot sample cell.
- 11. Add the contents of one Chromium 2 Reagent Powder Pillow. Cap the vial and invert repeatedly to mix. Remove the cap.
- 12. Add the contents of one Acid Reagent Powder Pillow. Cap the vial and invert repeatedly to mix. Remove the cap.
- 13. Add the contents of one ChromaVer 3 Chromium Reagent Powder Pillow. Cap the vial and invert repeatedly to mix.

Note: A purple color will form if chromium is present.

Note: **ChromaVer 3** is white to tan in color. Replace brown or green powder.

Undissolved powder does not affect accuracy.

14. Press the **TMR2** key to start the method timer, a 5-minute reaction period will begin.

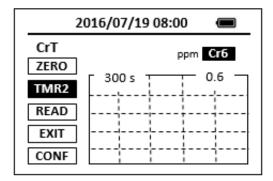


Figure 158

- 15. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to EXIT Key. Press the OK key to the icon menu-assisted.
- 16. After the timer beeps, fill a sample vial to the 10-ml line with raw water sample, this is the blank sample.
- 17. Pour 10 ml of sample from the 25-ml sample vial into a second sample vial, this is the prepared sample.
- 18. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 19. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.

20. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the READ key. Concentration value based on the last absorbance value measured will be calculated and displayed.

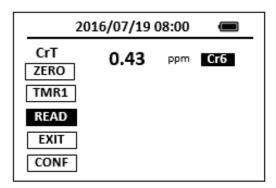


Figure 159

21. Press **EXIT** key to return to the main page.

The method is compatible with HACH 8024

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

30. Copper - CuBi

Test Program

Description: SP-910 Copper Method (0.02-5.00 ppm Cu) (Bicinchoninate Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH CuVer 1 Copper Reagent Powder Pillows (Cat. No. 21058-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

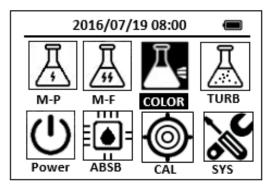


Figure 160

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CuBi** icon.

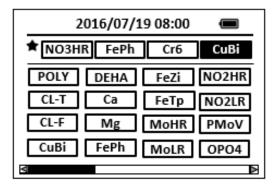


Figure 161

3. Press the OK key to enter **CuBi** test program interface.

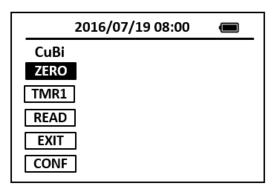


Figure 162

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: Adjust the pH of acid-preserved samples to 4-6 with 8 N KOH before analysis.

 Do not exceed pH 6 or copper may precipitate.
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

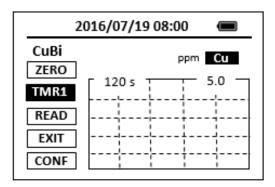


Figure 163

- 6. Take the sample vial out and add the contents of one CuVer 1 Copper Powder Pillow reagent. Swirl the vial to mix the reagent.
 - Note: A purple color will develop if copper ion is present.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 2-minute reaction period will begin.
 - Note: Accuracy is not affected by undissolved powder.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

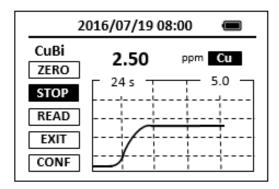


Figure 164

10. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8506

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

31.Copper - CuLR

Test Program

Description: SP-910 Copper Low Range Method (0.006-0.21 ppm Cu) (Porphyrin Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Copper Reagent (Cat. No. 26033-00) Includes:
 - (1) Copper Masking Reagent Powder Pillows (Cat. No. 26034-49)
 - (2) Porphyrin 1 Reagent Powder Pillows (Cat. No. 26035-49)
 - (3) Porphyrin 2 Reagent Powder Pillows (Cat. No. 26036-49)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

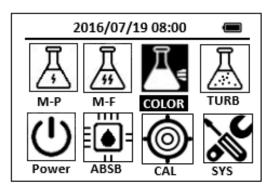


Figure 165

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CulR** icon.

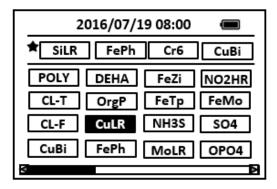


Figure 166

3. Press the OK key to enter **CuLR** test program interface.

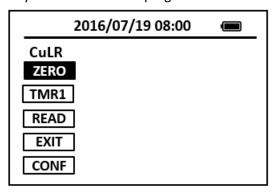


Figure 167

- 4. Fill two sample vials with 10 ml of sample.
 - Note: Wash all glassware with detergent. Rinse with tap water. Rinse again with Nitric Acid Solution 1:1. Rinse a third time with copper-free, deionized water.
- 5. Add the contents of one Copper Masking Reagent Powder Pillow to one of the sample vials (the blank sample). Cap the vial and invert to dissolve.

 Note: The other sample vial is the prepared sample.
- 6. Add the contents of one Porphyrin 1 Reagent Powder Pillow to each sample vial. Cap the vial and invert to dissolve.
- 7. Add the contents of one Porphyrin 2 Reagent Powder Pillow to each sample vial. Cap the vial and invert to dissolve.
 - Note: The yellow color will turn blue momentarily. If any copper is present, the yellow color will return.
- 8. Press the **ZERO** key. Pyxis SP-910 will display the page.

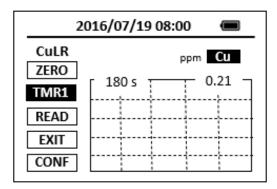


Figure 168

- 9. Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
- 10. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 11. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 12. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 13. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 14. Concentration value based on the last absorbance value measured will be calculated and displayed.

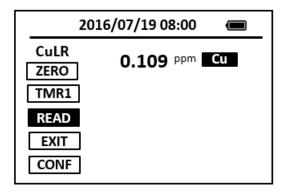


Figure 169

15. Press **EXIT** key to return to the main page.

The method is compatible with HACH 8143

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized

- <u>water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

32. Cyanuric Acid - CYAN

Test Program

Description: SP-910 Cyanuric Acid Method (7.0-55.0 ppm CYAN) (Turbidimetric Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Cyanuric Acid 2 Reagent Powder Pillow (Cat.No.2460-66)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

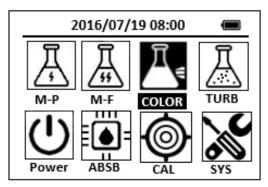


Figure 170

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CYAN** icon.

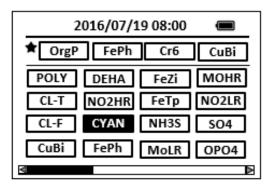


Figure 171

3. Press the OK key to enter **CYAN** test program interface.

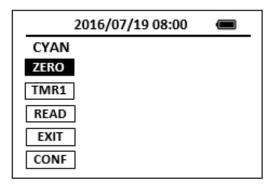


Figure 172

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample). Note: Filtering is required for highly turbid samples.
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 6. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key. Pyxis SP-910 will display the page.

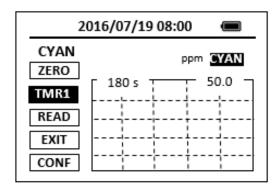


Figure 173

- 7. Take the sample vial out, add the contents of one Cyanuric Acid 2 Reagent Powder Pillow to the sample vial, Swirl the vial to mix the reagent.
- 8. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
 - Note: A white turbidity will form if cyanuric acid is present.
 - Note: Accuracy is not affected by undissolved powder.
- Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.
 - Note: Clean sample cells with soap, water and a brush soon after each test to prevent a white film from forming.

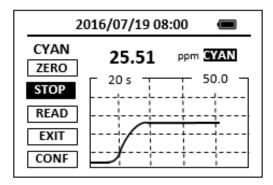


Figure 174

11. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8139

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

33. Cyclohexylamine - CYN-F

Test Program

Description: SP-910 Cyclohexylamine Method (0-1.2 ppm) (Fluorescent Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis CYN-F Reagent (PN:31076)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

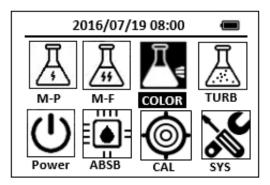


Figure 175

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **CYN-F** icon.

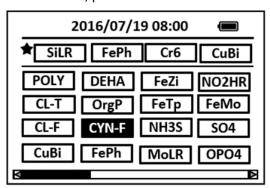


Figure 176

3. Press the OK key to enter **CYN-F** test program interface.

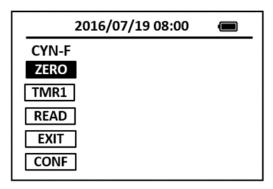


Figure 177

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

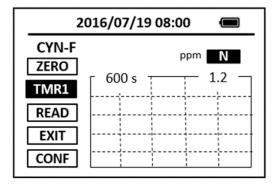


Figure 178

- 6. Take the sample vial out and add 0.2ml of CYN-F *reagent* to the sample vial. Swirl the vial to mix the reagent.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 10-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

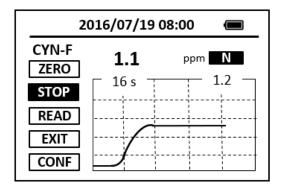


Figure 179

10. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

34. Diethyl hydroxylamine - DEHA

Test Program

Description: SP-910 Diethyl hydroxylamine Method (0.009-0.500 ppm DEHA) (Iron Reduction Method for Oxygen Scavengers)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 25ml Sample Vial
- 4. HACH Oxygen Scavenger Reagent Set (Cat. No. 24466-00) Includes:
 - (1) DEHA Reagent 1 Powder Pillow (Cat. No. 21679-69)
 - (1) DEHA Reagent 2 Powder Pillow (Cat. No. 21680-42)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

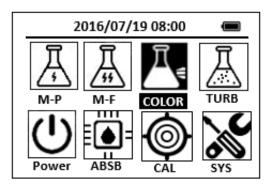


Figure 180

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **DEHA** icon.

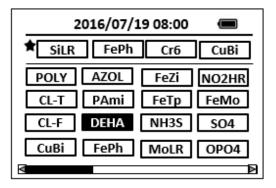


Figure 181

3. Press the OK key to enter **DEHA** test program interface.

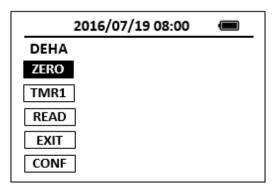


Figure 182

- 4. Fill a sample vial to the 25-ml line with deionized water (the blank sample).
- 5. Fill a sample vial to the 25-ml line with sample (the prepared sample).

 Note: The sample temperature should be 25 ± 3°C (77 ± 5 °F).

 Note: When testing for compounds that react quickly with oxygen at room temperature, stopper the vial containing the sample in Steps 5–14.
- 6. Add the contents of one DEHA Reagent 1 to each sample vial. Cap the vials and invert to mix.
- 7. Add exactly 0.5 ml of DEHA Reagent 2 Solution to each sample vial. Cap and swirl to mix. Place both sample vials in the dark.
 - Note: A purple color will slowly develop if DEHA is present.
- 8. Press the ZERO key. Pyxis SP-910 will display the page.

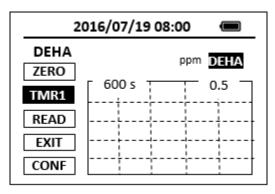


Figure 183

- 9. Press the **TMR1** key to start the method timer, a 10-minute reaction period will begin. For hydroquinone, allow only a two-minute reaction period

 Note: Both sample vials must remain in the dark for the entire reaction period.

 Note: Temperature and reaction time affect results.
- 10. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 11. Pour 10 ml solution out of the 25-ml blank sample vial (the blank sample).
- 12. Pour 10 ml solution out of the 25-ml prepared sample vial (the prepared sample).
- 13. Use a soft cloth or lint free paper tissue to clean the 10 ml sample vial.
- 14. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 15. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 16. Concentration value based on the last absorbance value measured will be calculated and displayed.

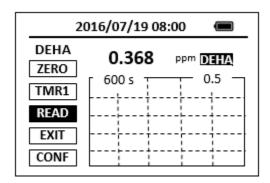


Figure 184

17. Press **EXIT** key to return to the main page.

Other Oxygen Scavengers

To determine other oxygen scavengers, perform the test as directed above, then multiply the DEHA result by the appropriate factor below:

Table 2

Oxygen Scavenger	Factor
Erythorbic Acid	3.5
(Iso-ascorbic acid)	
Hydroquinone	2.5
Methylethylketoxime (MEKO)	4.1
Carbohydrazide	1.3

The method is compatible with HACH 8140

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. <u>Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.</u>

35. Dissolved Oxygen-DO

Test Program

Description: SP-910 Dissolved Oxygen Method (0.5 -10.0 ppm O2) (lodimetry Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis DO Reagent (PN: 31119)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. The main page will display eight major feature groups.

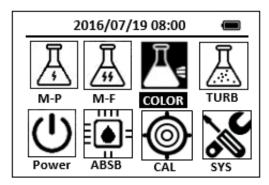


Figure 185

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **DO** icon.

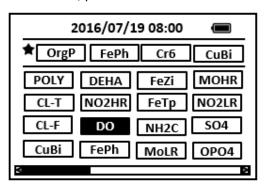


Figure 186

3. Press the OK key to enter **DO** test program interface.

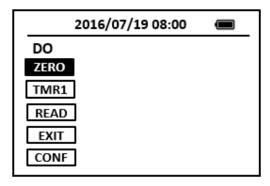


Figure 187

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Fill a sample vial to the 10-ml line with sample (the prepared sample).

Note: To avoid air entering the water sample, gently immerse the bottle into the sample water or use a pipette to take deep water from the sample water and inject it along the bottom of the colorimetric bottle.

- 6. Add three drops of DO-1 Solution to each sample vial. Swirl the vial to mix the reagent.
- 7. Press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

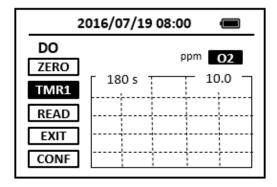


Figure 188

- 8. Add the contents of one DO-2 reagent to the prepared sample vial. Swirl the vial to mix the reagent.
- 9. Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
- 10. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **EXIT** key.
- 11. Add three drops of DO-3 Solution to the sample vial. Swirl the vial to mix the reagent.
- 12. Use a soft cloth or lint free paper tissue to clean the sample vial.

- 13. Repeat step 2, place the blank sample into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 14. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 15. Concentration value based on the last absorbance value measured will be calculated and displayed.

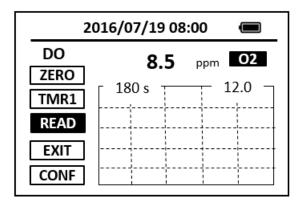


Figure 189

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

36.Fluoride - F

Test Program

Description: SP-910 Fluoride Method (0.05-2.00 ppm F) (SPADNS Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH SPADNS Reagent for Fluoride (Cat.No. 444-49)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

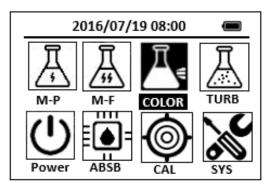


Figure 190

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **F** icon.

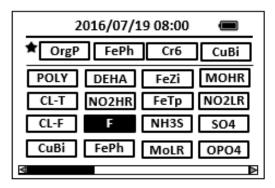


Figure 191

3. Press the OK key to enter **F** test program interface.

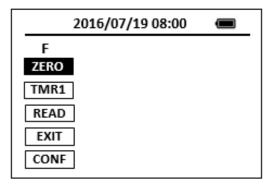


Figure 192

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).

 Note: The sample and blank should be at the same temperature (±1 °C).

 Temperature adjustments may be made before or after reagent addition.
- 5. Fill a sample vial to the 10-ml line with sample (the prepared sample).
- 6. Add 2.0 ml of SPADNS Reagent to each sample vial. Cap the vials and invert to mix.

 Note: F Reagent is toxic and corrosive; use care while measuring. Use a pipet filler.

 Note: The F Reagent must be measured accurately.
- 7. Press the **ZERO** key. Pyxis SP-910 will display the page.

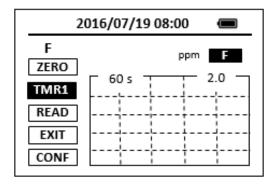


Figure 193

- 8. Press the **TMR1** key to start the method timer, a 1-minute reaction period will begin.
- 9. When the timer reaches the preset time and the reaction is complete, the timer beeps, After the timer beeps, the cursor will automatically switch to EXIT Key. Press the OK Key to the icon menu-assisted.
- 10. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 11. Place the prepared blank into the Pyxis SP-910 sample vial compartment. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** Key.

- 12. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 13. A new concentration value based on the last absorbance value measured will be calculated and displayed.

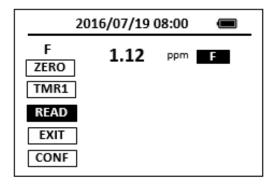


Figure 194

14. Press **EXIT** Key to return to the main page.

The method is compatible with HACH 8029

Notes:

- 1. <u>The center key is the OK key. Press the OK key on a selected item to launch the</u> action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

37. Total Iron - FeMo

Test Program

Description: SP-910 Total Iron Method (0.03-1.80 ppm Fe) (Ferro MO Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 25-ml Sample Vial
- 4. 50-ml Graduated Mixing Cylinder
- 5. HACH FerroMo Reagent Set (Cat.No.25448-00) Includes:
 - (1) FerroMo Iron Reagent 1 Powder Pillows (Cat. No. 25437-68)
 - (2) FerroMo Iron Reagent 2 Powder Pillows (Cat. No. 25438-66)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

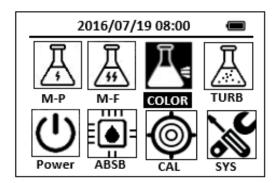


Figure 195

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **FeMo** icon.

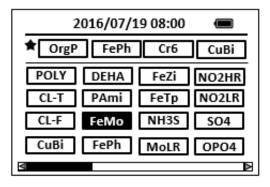


Figure 196

3. Press the OK key to enter **FeMo** test program interface. Note: Determination of total iron requires digestion

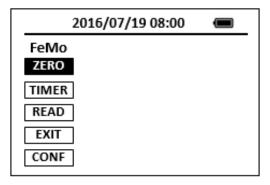


Figure 197

- 4. Fill a graduated mixing cylinder to the 50-ml line with sample.
 - Note: A sample pH of less than 3 or greater than 4 after reagent addition may inhibit color formation, cause the developed color to fade, or result in turbidity.

 Adjust the sample pH before reagent addition to between 3 and 5 using a pH meter or pH paper. Drop by drop, add an appropriate amount of acid (1.0 N Sulfuric Acid Solution) or base (1.0 N Sodium Hydroxide Standard Solution).
 - Note: Rinse glassware with 1:1 Hydrochloric Acid Solution. Rinse again with deionized water. This removes iron deposits which can cause slightly high results.
- 5. Add the contents of FerroMo Iron Reagent 1 Powder Pillow to 50-ml sample vial, Swirl the vial to mix the reagent. This is the prepared sample.
- 6. Transfer 25 ml of the prepared sample to a 25-ml sample Vial.
- 7. Add the contents of FerroMo Iron Reagent 2 Powder Pillow to 25-ml sample vial, Cap the vial and shake for 30 seconds.
- 8. Press the **ZERO** key. Pyxis SP-910 will display the page.

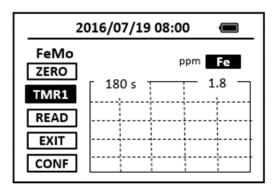


Figure 198

- 9. Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
 - Note: A blue color will develop if iron is present.
- 10. When the timer reaches the preset time and the reaction is complete, the timer beeps, After the timer beeps, the cursor will automatically switch to EXIT key. Press the OK key to the icon menu-assisted.
- 11. Pour 10-ml solution from the 25ml sample vial (the prepared sample).
- 12. Pour 10-ml solution from the 50ml graduated mixing cylinder (the blank sample).
- 13. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 14. Place the prepared blank into the Pyxis SP-910 sample vial compartment. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
 - Note: For samples containing high levels of molybdate (≥100 mg/L), read the sample immediately after zeroing the blank.
- 15. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 16. Concentration value based on the last absorbance value measured will be calculated and displayed.

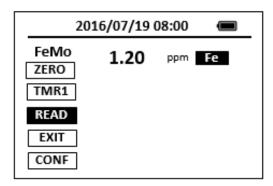


Figure 199

17. Press **EXIT** Key to return to the main page.

The method is compatible with HACH 8365

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity,
 except for during a measurement. Pressing and holding the OK key for 3 seconds
 will wake up the instrument, and return to the original page if it has any
 measurement data.

38. Total Iron - FePh

Test Program

Description: SP-910 Total Iron Method (0.03-3.00 ppm Fe) (1,10 phenanthroline Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH FerroVer Iron Reagent Powder Pillows (Cat.No.21057-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

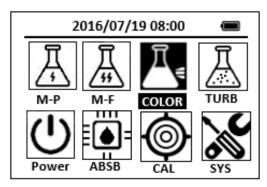


Figure 200

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **FePh** icon.

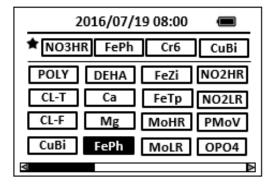


Figure 201

3. Press the OK key to enter **FePh** test program interface.

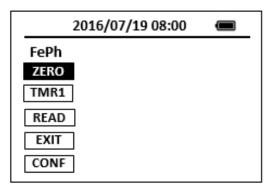


Figure 202

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: For turbid samples, treat the blank with one 0.1-gram scoop of Rover Rust
 Remover. Swirl to mix.
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

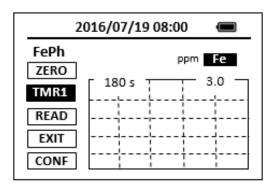


Figure 203

- 6. Take the sample vial out and add the contents of one FerroVer Iron Reagent Powder Pillow to the sample vial. Swirl the vial to mix the reagent.
 - Note: Accuracy is not affected by undissolved powder.
 - Note: An orange color will develop if iron ion is present.
- Place sample vial back into the sample vial compartment and Press the TMR1 key
 to start the method timer, a 3-minute reaction period will begin.

 Note: Samples containing visible rust should be allowed to react at least five minutes.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time

9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

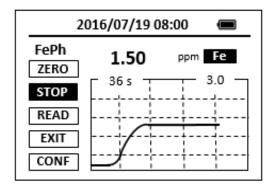


Figure 204

10. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8008

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

39. Total Iron - FeSal

Test Program

Description: SP-910 Total Iron Method (0.05-5.00 ppm Fe) (5-Sulfosalicylic Acid Dihydrate Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis FeSal Reagent (PN:31078) Includes:
 - (1) FeSal -1
 - (2) FeSal -2

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

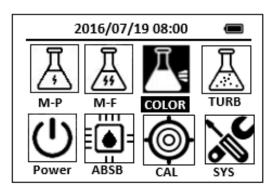


Figure 205

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **FeSal** icon.

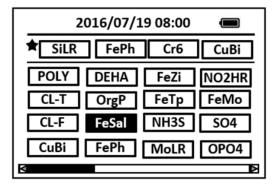


Figure 206

3. Press the OK key to enter **FeSal** test program interface.

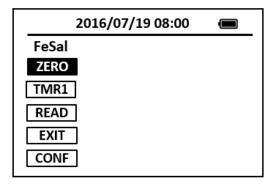


Figure 207

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

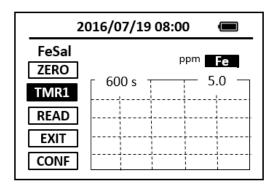


Figure 208

- 6. Take the sample vial out and add the FeSal-1 reagent to the sample vial. Swirl the vial to mix the reagent.
- 7. Add the FeSal-2 reagent to the sample vial. Swirl the vial to mix the reagent.

- 8. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 10-minute reaction period will begin.
- 9. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

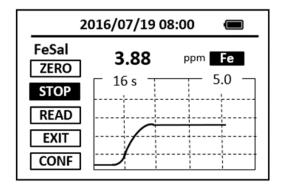


Figure 209

11. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

40. Total Iron - FeTp

Test Program

Description: SP-910 Iron Method (0.04-1.80 ppm Fe) (TPTZ Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH TPTZ Iron Reagent Powder Pillows (Cat. No. 26087-99)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

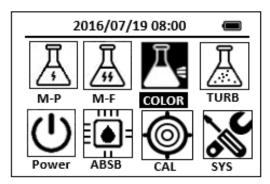


Figure 210

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **FeTp** icon.

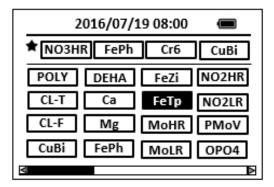


Figure 211

3. Press the OK key to enter **FeTp** test program interface.

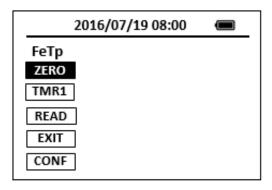


Figure 212

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: Sample pH is important in this test.
 - Note: Rinse glassware with a 1:1 hydrochloric acid and deionized water before use to avoid errors due to iron deposits on the glass.
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

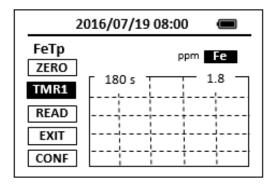


Figure 213

- 6. Take the sample vial out and add the contents of one TPTZ Iron Reagent Powder Pillow to the sample vial. Swirl the vial to mix the reagent. Cap and shake the cell for 30 seconds.
 - Note: A blue color will develop if iron ion is present.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.

9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.



Figure 214

10. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the STOP key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8112

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

41. Total Iron - FeZi

Test Program

Description: SP-910 Total Iron Method (0.011-1.300 ppm Fe) (Ferrozine Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 25-ml Sample Vial
- 4. HACH FerroZine Iron Reagent Solution Pillows (Cat. No. 2301-66)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

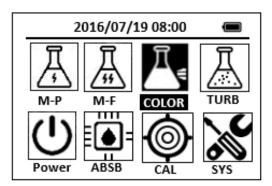


Figure 215

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **FeZi** icon.

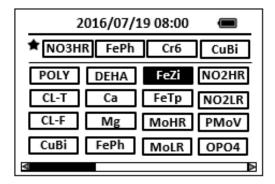


Figure 216

3. Press the OK key to enter **FeZi** test program interface.

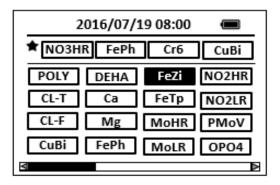


Figure 217

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Fill a sample vial to the 25-ml line with sample.

 Note: Rinse glassware with a 1:1 Hydrochloric Acid Solution and deionized water before use to avoid errors due to iron deposits on the glass.
- 6. Add the contents of the contents of one FerroZine Iron Reagent Solution Pillow to 25-ml sample vial, Swirl the vial to mix the reagent.
- 7. Press the **ZERO** key. Pyxis SP-910 will display the page.

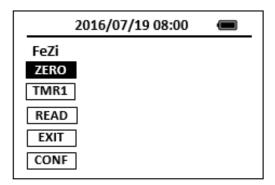


Figure 218

8. Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.

Note: A violet color will develop if iron is present.

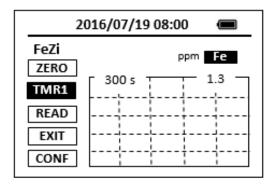


Figure 219

- When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to EXIT key.
 Press the OK key to the icon menu-assisted.
- 10. Pour 10-ml solution from the 25ml sample vial ((the prepared sample).
- 11. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 12. Place the prepared blank into the Pyxis SP-910 sample vial compartment. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 13. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 14. A new concentration value based on the last absorbance value measured will be calculated and displayed.

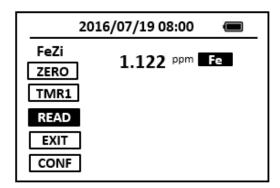


Figure 220

15. Press **EXIT** key to return to the main page.

The method is compatible with HACH 8147

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity,
 except for during a measurement. Pressing and holding the OK key for 3 seconds
 will wake up the instrument, and return to the original page if it has any
 measurement data.

42. Hydrogen peroxide - H2O2

Test Program

Description: SP-910 Hydrogen peroxide Method (0.02-500 ppm H2O2) (lodimetry Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis H2O2 Reagent (PN: 31079)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. The main page will display eight major feature groups.

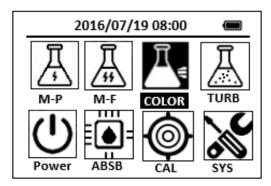


Figure 221

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **H2O2** icon.

Figure 222

3. Press the OK key to enter **H2O2** test program interface.

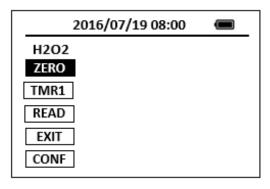


Figure 223

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

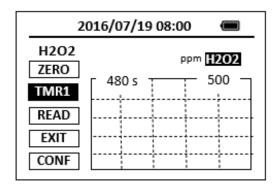


Figure 224

- 6. Take the sample vial out and add the contents of one H2O2 regent to the sample vial. Swirl the vial to mix the reagent.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 480-second reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

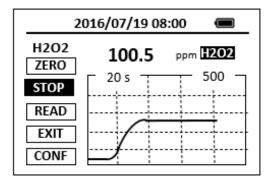


Figure 225

10. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

43. Hydrogen peroxide, Low Range - H2O2L

Test Program

Description: SP-910 Hydrogen peroxide Low Range Method (0.05-1.5 ppm H2O2) (DPD

Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis H2O2L Reagent (PN: 31124)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. The main page will display eight major feature groups.

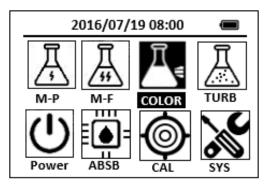


Figure 226

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **H2O2L** icon.

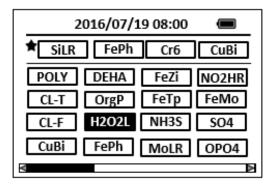


Figure 227

3. Press the OK key to enter **H2O2L** test program interface.

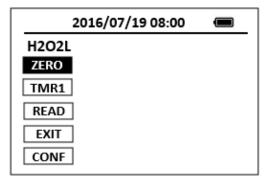


Figure 228

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- Use a soft cloth or lint free paper tissue to clean the sample vial. Place the
 prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO
 key to zero the instrument. Pyxis SP-910 will display the page.

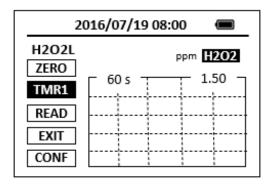


Figure 229

- 6. Take the sample vial out and add one drop of H2O2L-1 regent to the sample vial. Swirl the vial to mix the reagent.
- 7. Add the contents of one H2O2L-2 reagent to the sample vial. Swirl the vial to mix the reagent.
- 8. Place sample vial back into the sample vial compartment and press the **TMR1** key to start the method timer, a 60-second reaction period will begin.
- 9. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

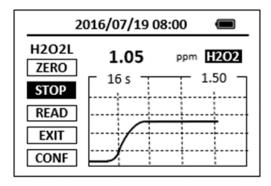


Figure 230

11. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

44. Magnesium - Mg

Test Program

Description: SP-910 Magnesium Method (0.13-4.00 ppm Mg as CaCO3) (Calmagite Colorimetric Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 100-ml graduated mixing cylinder
- 4. HACH Hardness Reagent Set (Cat. No. 23199-00) Includes:
 - (1) Alkali Solution for Calcium and Magnesium Test (Cat. No. 22417-32)
 - (2) Calcium and Magnesium Indicator Solution (Cat. No. 22418-32)
 - (3) EDTA Solution (Cat. No. 22419-26)
 - (4) EGTA (Cat. No. 22297-26)

Program:

1. Press OK Key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

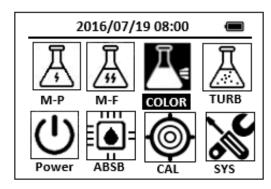


Figure 231

2. Position the cursor to **COLOR** icon by navigation Keys and press the OK Key to enter COLOR selection interface, position the cursor to **Mg** icon.

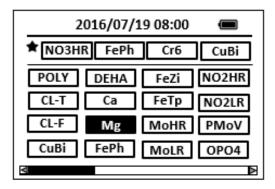


Figure 232

3. Press the OK Key to enter Mg test program interface.

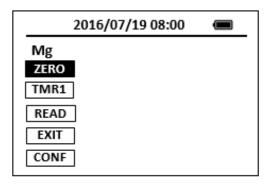


Figure 233

- 4. Pour 100 ml of sample into a 100-ml graduated mixing cylinder. *Note: The sample temperature should be 21-29 °C (70-84 °F).*
- 5. Add 1.0 ml of Calcium and Magnesium Indicator Solution using a 1.0-mlmeasuring dropper. Stopper. Invert several times to mix.
- 6. Add 1.0 ml of Alkali Solution for Calcium and Magnesium using a 1.0-ml measuring dropper. Stopper. Invert several times to mix.

 Note: If the sample turns read after adding Alkali Solution, dilute sample 1:1 and repeat analysis.
- 7. Pour 10 ml of the solution into each of two sample vials.

 Note: The test will detect any calcium or magnesium contamination in the mixing cylinder, measuring droppers or sample vials. To test cleanliness, repeat the test multiple times until you obtain consistent results.
- 8. Add one drop of EDTA solution to one vial (the blank sample). Swirl the vial to mix the reagent.
- 9. Add one drop of EGTA solution to another vial (the prepared sample). Swirl the vial to mix the reagent.
- 10. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO Key to zero the instrument. Pyxis SP-910 will display the page.

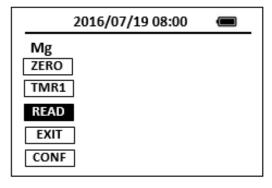


Figure 234

- 11. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** Key.
- 12. Concentration value based on the last absorbance value measured will be calculated and displayed.

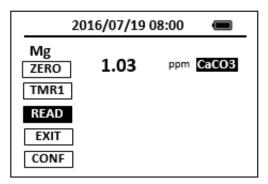


Figure 235

13. Press **EXIT** Key to return to the main page.

The method is compatible with HACH 8030

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 Hydrochloric Acid Solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK Key for 3 seconds

will wake up the instrument, and return to the original page if it has any measurement data.

45. Manganese, High Range - MnHR

Test Program

Description: SP-910 Manganese High Range Method (0.2-20.0 ppm Mn) (Periodate Oxidation Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH High Range Manganese Reagent Set (Cat. No. 24300-00) Includes:
 - (1) Buffer Powder Pillows, citrate type for Manganese (Cat. No. 21076-69)
 - (2) Sodium Periodate Powder Pillows for Manganese (Cat. No. 21077-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

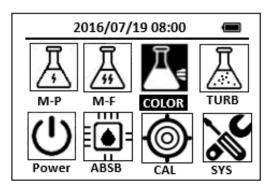


Figure 236

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **MnHR** icon.

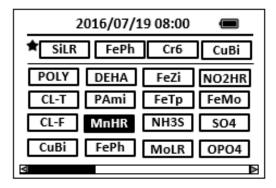


Figure 237

3. Press the OK key to enter MnHR test program interface.

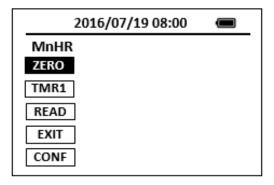


Figure 238

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: Adjust the pH to 4 to 5 with 5.0 N sodium hydroxide before analysis.
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 6. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key. Pyxis SP-910 will display the page.

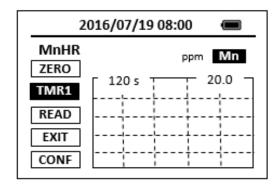


Figure 239

- 7. Take the sample vial out, Add the contents of one Buffer Powder Pillow to the sample vial, Swirl the vial to mix the reagent.
- 8. Add the contents of one Sodium Periodate Powder Pillow to the sample vial, Swirl the vial for 10 seconds to mix the reagent.

- 9. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 2-minute reaction period will begin.

 Note: A violet color will form if manganese is present.
- 10. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 11. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

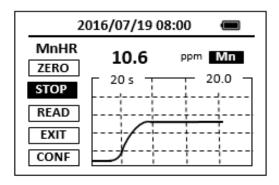


Figure 240

12. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8034

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

46. Manganese, Low Range - MnLR

Test Program

Description: SP-910 Manganese Low Range Method (0.02-0.70 ppm Mn) (PAN Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Manganese Reagent Set (Cat. No. 26517-00) Includes:
 - (1) Alkaline-Cyanide Reagent (Cat. No. 21223-26)
 - (2) Ascorbic Acid Powder Pillows (Cat. No. 14577-99)
 - (3) PAN Indicator Solution, 0.1% (Cat. No. 21224-26)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

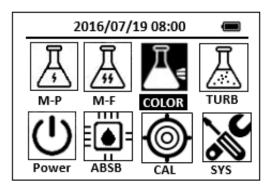


Figure 241

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **MnLR** icon.

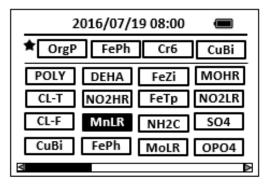


Figure 242

3. Press the OK key to enter MnLR test program interface.

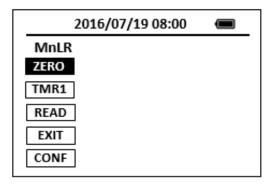


Figure 243

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).

 Note: Rinse all glassware with 1:1 Nitric Acid Solution. Rinse again with deionized water
- 5. Fill another sample vial with 10 ml of sample (the prepared sample).
- 6. Add the contents of one Ascorbic Acid Powder Pillow to each sample vial. Cap the vials and invert to mix.
- 7. Add 12 drops of Alkaline-Cyanide Reagent Solution to each vial. Swirl to mix.

 Note: A cloudy solution may form in some samples after reagent addition. The turbidity should dissipate after Step 13.
 - Note: A pipet may be used to dispense 0.4 ml of the Alkaline Cyanide Reagent.
- 8. Add 12 drops of PAN Indicator Solution,0.1%, to each vial. Swirl to mix.

 Note: An orange color will develop in the sample if manganese is present.

 Note: A pipet may be used to dispense 0.4 ml of the PAN Indicator Solution.
- 9. Press the **ZERO** key. Pyxis SP-910 will display the page.

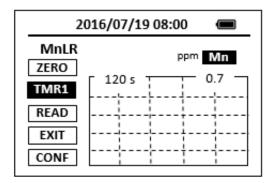


Figure 244

- 10. Press the **TMR1** key to start the method timer, a 2-minute reaction period will begin.
- 11. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 12. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 13. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 14. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 15. Concentration value based on the last absorbance value measured will be calculated and displayed.

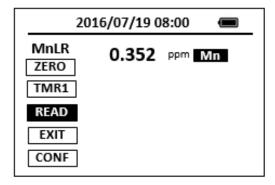


Figure 245

16. Press **EXIT** key to return to the main page.

The method is compatible with HACH 8149

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized

- water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

47. Molybdenum, Molybdate, High Range - MoHR

Test Program

Description: SP-910 Molybdenum, Molybdate, High Range Method (0.2-40.0 ppm Mo6)

(Mercaptoacetic Acid Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Molybdenum Reagent Set (Cat. No. 26041-00) Includes:
 - (1) MolyVer 1 Reagent Powder Pillows (Cat. No. 26042-99)
 - (2) MolyVer 2 Reagent Powder Pillows (Cat. No. 26043-99)
 - (3) MolyVer 3 Reagent Powder Pillows (Cat. No. 26044-99)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

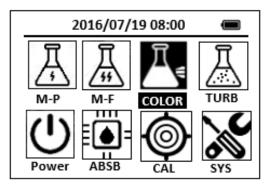


Figure 246

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **MoHR** icon.

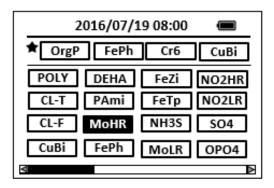


Figure 247

3. Press the OK key to enter **MoHR** test program interface.

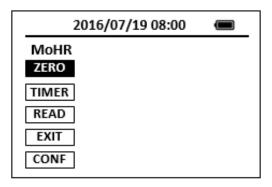


Figure 248

4. Fill a sample vial to the 10-ml line with sample (the blank sample).

Note: Filter turbid samples.

Note: Adjust pH of stored samples before analysis

- 5. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 6. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 7. Add the contents of MolyVer 1 Reagent Powder Pillow to the sample vial, Swirl the vial to mix the reagent.
- 8. Add the contents of MolyVer 2 Reagent Powder Pillow to the sample vial. Swirl the vial to mix the reagent.
- Add the contents of one MolyVer 3 Reagent Powder Pillow to the sample vial.Swirl the vial to mix the reagent.

Note: Accuracy is not affected by undissolved powder.

10. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.

Note: Molybdenum will cause a yellow color to form.

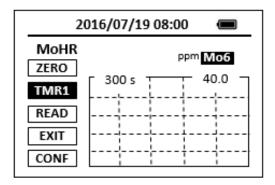


Figure 249

- 11. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 12. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

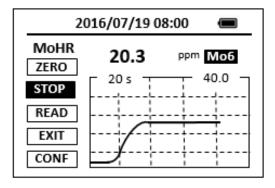


Figure 250

13. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8036

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock

- position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

48. Molybdenum, Molybdate, Low Range - MoLR

Test Program

Description: SP-910 Molybdenum, Molybdate, Low Range Method (0.07-3.00 ppm Mo6)

(Ternary Complex Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 25-ml mixing graduated cylinder
- 4. HACH Molybdenum Reagent Set, 20 mL sample (Cat. No. 24494-00) Includes:
 - (1) Molybdenum 1 Reagent for 20 mL sample size (Cat. No. 23524-49)
 - (2) Molybdenum 2 Reagent Solution (Cat. No. 23525-12)

Program:

1. Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

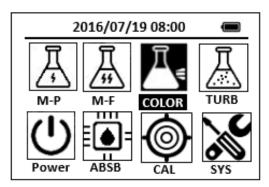


Figure 251

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **MoLR** icon.

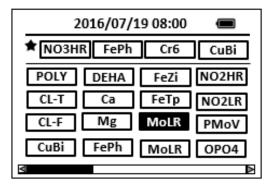


Figure 252

3. Press the OK key to enter MoLR test program interface.

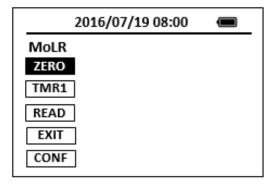


Figure 253

Note: Filter turbid samples.

- 4. Fill a 25-ml mixing graduated cylinder with 20 ml of the sample.
- 5. Add the contents of Molybdenum 1 Reagent Powder Pillow to 25-ml mixing graduated cylinder. stopper. Invert the graduated cylinder several times to dissolve the reagents.
- 6. Pour 10 mL of the solution into a 10-ml sample cell.
- 7. Add 0.5 mL of Molybdenum 2 Reagent to the sample cell. Swirl to mix. This is the prepared sample.
 - Note: Molybdenum will cause a green color to form.
- 8. Press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

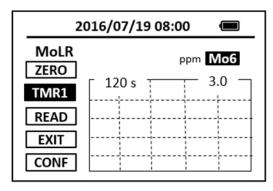


Figure 254

- 9. Press the **TMR1** key to start the method timer, a 2-minute reaction period will begin.
- 10. When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to EXIT key. Press the OK key to the icon menu-assisted.
- 11. Fill a second sample cell with 10 mL of solution from the graduated cylinder (the blank).
- 12. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 13. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 14. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 15. A new concentration value based on the last absorbance value measured will be calculated and displayed.

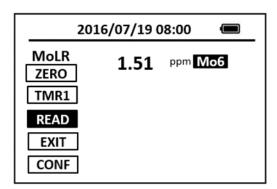


Figure 255

The method is compatible with HACH 8169

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity,
 except for during a measurement. Pressing and holding the OK key for 3 seconds
 will wake up the instrument, and return to the original page if it has any
 measurement data.

49. Hydrazine - N2H4

Test Program

Description: SP-910 Hydrazine Method (0.016-0.5 ppm N2H4) (p-Dimethylaminobenzaldehyde Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH HydraVer 2 Hydrazine Reagent

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

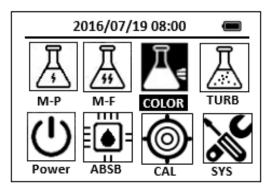


Figure 256

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **N2H4** icon.

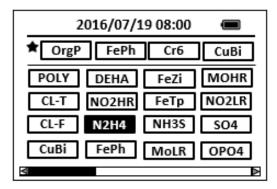


Figure 257

3. Press the OK key to enter **N2H4** test program interface.

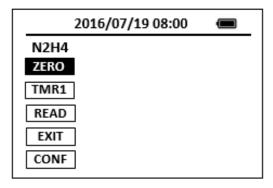


Figure 258

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Fill a sample vial to the 10-ml line with sample (the prepared sample).
- 6. Add 0.5 ml of HydraVer 2 Hydrazine Reagent to each sample vial. Cap the vials and invert to mix.
- 7. Press the **ZERO** key. Pyxis SP-910 will display the page.

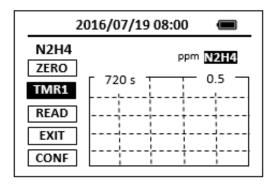


Figure 259

8. Press the **TMR1** key to start the method timer, a 12-minute reaction period will begin.

Note: Complete Steps10-13 within 3 minutes.

Note: A yellow color will form if hydrazine is present. The blank will be a faint yellow color due to the N2H4 reagent.

- 9. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 10. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 11. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 12. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.

13. Concentration value based on the last absorbance value measured will be calculated and displayed. Pyxis SP-910 will display the page.

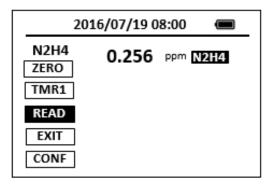


Figure 260

14. Press **EXIT** key to return to the main page.

The method is compatible with HACH 8141

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

50. Chloramine, Mono, Low Range - NH2C

Test Program

Description: SP-910 Chloramine, Mono, Low Range Method (0.1-3.0 ppm CL2) (Indophenol Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Monochlor F Reagent Pillows (Cat. No. 28022-46)

Program:

1. Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

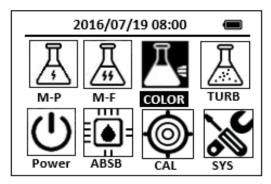


Figure 261

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NH2C** icon.

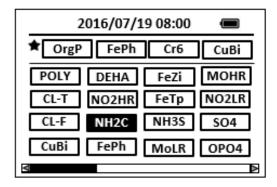


Figure 262

3. Press the OK key to enter **NH2C** test program interface.

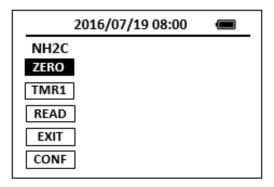


Figure 263

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: For the most accurate results, determine reagent blank for each new lot of reagent by running the test using deionized water instead of sample.
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 6. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key. Pyxis SP-910 will display the page.

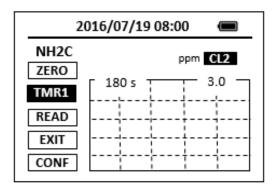


Figure 264

- 7. Take the sample vial out, Add the contents of one pillow Monochlor—F to the sample vial, Swirl the vial about 20 seconds to dissolve.
- 8. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.

 Note: The color development time depends on the sample temperature.
- Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

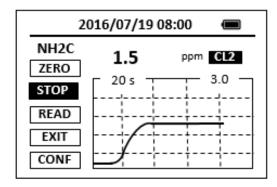


Figure 265

11. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the **STOP** key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 10171

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

51. Nitrogen, Total (Test 'N Tube Method) - N-TLR

Test Program

Description: SP-910 Total Nitrogen Low Range Method (2.0-25.0 ppm N) (Test 'N Tube Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. Pyxis RD-910 Reactor
- COD/TNT adapter
- 4. HACH Test 'N Tube Total Nitrogen Reagent Set (Cat. No. 26722-45) Includes:
 - (1) TN Reagent C Vials, Acid Solution*(Cat. No. 26721-45)
 - (2) TN Hydroxide Reagent Sample Digestion Vials*(Cat. No. 26717-45)
 - (3) TN Persulfate Reagent Powder Pillows (Cat. No. 26718-49)
 - (4) TN Reagent A, Bisulfite Powder Pillows (Cat. No. 26719-49)
 - (5) TN Reagent B, Indicator Powder Pillows (Cat. No. 26720-49)

Program:

- Turn on the RD-910 Reactor. Preheat to 105 °C.
 Note: See RD-910 user manual for selecting pre-programmed temperature applications.
- 2. Using a funnel, add the contents of one Total Nitrogen Persulfate Reagent Powder Pillow to each of two Total Nitrogen Hydroxide Reagent vials.
 - Note: Wipe off any reagent that may get on the lid or the tube threads.
 - Note: One reagent blank is sufficient for each set of samples.
- 3. Add 2 ml of sample to one vial. Add 2 ml of organic-free water to another vial (the reagent blank). Cap both vials and shake vigorously (about 30 seconds). Place the vials in the Reactor. Heat for 30 minutes.
 - Note: The reagent may not dissolve completely after shaking.
 - Note: Alternate water must be free of all nitrogen containing species.
- 4. Using finger cots or gloves, remove the hot vials from the reactor and allow to cool to room temperature.
 - Note: It is very important to remove the vials from the Reactor after exactly 30 minutes.
- 5. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

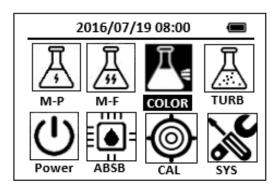


Figure 266

6. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **N-TLR** icon.

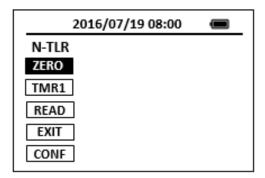


Figure 267

- 7. Remove the caps from the digested vials and add the contents of one TN Reagent A Powder Pillow to each vial. Cap the vials and shake for 15 seconds.
- 8. Insert the COD/TNT adapter into the vial holder by rotating the adapter until it drops into place. Then push down to fully insert it.

 Note: For increased performance, a diffuser band covers the light path holes on the adapter. Do not remove the diffuser band
- 9. Press the **ZERO** key. Pyxis SP-910 will display the page.

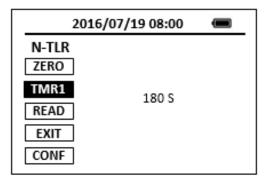


Figure 268

10. Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.

11. When the timer reaches the preset time and the reaction is complete, after the timer beeps, Pyxis SP-910 will display the page.

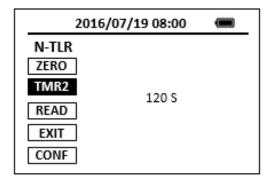


Figure 269

- 12. Remove the caps and add one TN Reagent B Powder Pillow to each vial. Cap the vials and shake for 15 seconds.
- 13. Press the **TMR2** key to start the method timer, a 2-minute reaction period will begin.
 - Note: The reagent will not completely dissolve. The solution will begin to turn yellow.
- 14. After the timer beeps, take out two TN Reagent C Vials, remove the caps.
- 15. Add 2 ml of digested, treated sample to one vial (TN Reagent C Vial) as the prepared sample. add 2 ml of the digested, treated reagent blank to the second vial (TN Reagent C Vial) as the blank sample.
- 16. Cap and invert 10 times to mix. Use slow, deliberate inversions for complete recovery. The vials will be warm.
 - Note: Follow these instructions for inversion or low results may occur. Hold the vial vertical with the cap up. Invert the vial and wait for all of the solution to flow to the cap end. Pause. Return the vial to the upright position and wait for all of the solution to flow to the vial bottom. This is one inversion (10 inversions = 30 seconds)
- 17. Press the **TMR3** key to start the method timer, a 5-minute reaction period will begin.

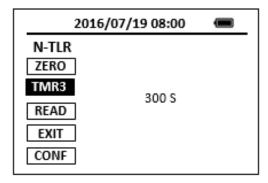


Figure 270

- 18. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 19. Use a soft cloth or lint free paper tissue to clean the sample vial.

 Note: Wiping with a damp towel, followed by a dry one, will remove fingerprints or other marks.
- 20. Place the sample vial in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 21. Repeat step 5, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 22. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 23. Concentration value based on the last absorbance value measured will be calculated and displayed.

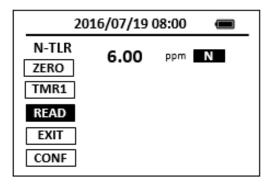


Figure 271

The method is compatible with HACH 10071

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. <u>Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity,</u> except for during a measurement. Pressing and holding the OK key for 3 seconds

will wake up the instrument, and return to the original page if it has any measurement data.

52. Nitrogen, Total (Test 'N Tube Method) - N-THR

Test Program

Description: SP-910 Total Nitrogen High Range Method (7-150 ppm N) (Test 'N Tube Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. Pyxis RD-910 Reactor
- COD/TNT adapter
- 4. Test 'N Tube HR Total Nitrogen Reagent Set (Cat. No. 27141-00) Includes:
 - (1) HR Total Nitrogen Hydroxide Digestion Vials (Cat. No. *)
 - (2) Total Nitrogen Persulfate Reagent Powder Pillows (Cat. No. 26718-46)
 - (3) Total Nitrogen Reagent A, Bisulfite Powder Pillows (Cat. No. 26719-46)
 - (4) Total Nitrogen Reagent B, Indicator Powder Pillows (Cat. No. 26720-46)
 - (5) Total Nitrogen Reagent C Vials, Acid Solution (Cat. No. *)

Program:

- 1. Turn on the RD-910 Reactor. Preheat to 105 °C.
 - Note: See RD-910 user manual for selecting pre-programmed temperature applications.
- Using a funnel, add the contents of one Total Nitrogen Persulfate Reagent Powder Pillow to one HR Total Nitrogen Hydroxide Digestion vial.
 - Note: Wipe off any reagent that may get on the lid or the tube threads.
- 3. Add 0.5 ml of organic-free water to the vial (the reagent blank). Cap the vial and shake vigorously for about 30 seconds.
- 4. Using a funnel, add the contents of one Total Nitrogen Persulfate Reagent Powder Pillow to another HR Total Nitrogen Hydroxide Digestion vial.
- 5. Add 0.5 ml of sample to one vial. Cap the vial and shake vigorously about 30 seconds.
 - Note: The reagent may not dissolve completely after shaking.
 - Note: Alternate water must be free of all nitrogen containing species.
 - Note: One reagent blank is sufficient for each set of samples.
- 6. Place the vials in the reactor. Heat for 30 minutes.
- 7. Using finger cots or gloves, remove the hot vials from the reactor and allow to cool to room temperature.
 - Note: It is very important to remove the vials from the Reactor after exactly 30 minutes.

8. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

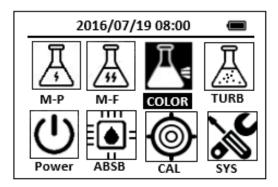


Figure 272

9. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **N-THR** icon.

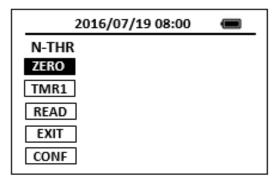


Figure 273

- Remove the caps from the digested vials and add the contents of one Total Nitrogen Reagent A Powder Pillow to each vial. Cap the vials and shake for 15 seconds.
- 11. Insert the COD/TNT adapter into the vial holder by rotating the adapter until it drops into place. Then push down to fully insert it.

 Note: For increased performance, a diffuser band covers the light path holes on the adapter. Do not remove the diffuser band
- 12. Press the **ZERO** key. Pyxis SP-910 will display the page.

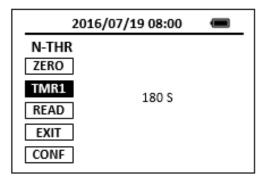


Figure 274

- 13. Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
- 14. When the timer reaches the preset time and the reaction is complete, Pyxis SP-910 will display the page.

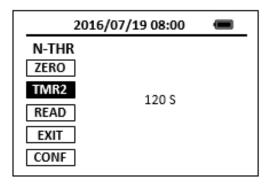


Figure 275

- 15. After the timer beeps, remove the caps and add one Nitrogen Reagent B Powder Pillow to each vial. Cap the vials and shake for 15 seconds.
- 16. Press the **TMR2** key to start the method timer, a 2-minute reaction period will begin.
- 17. After the timer beeps, take out two Total Nitrogen Reagent C vials, remove the caps. Add 2 ml of digested, treated sample to one vial (Total Nitrogen Reagent C vial) as the prepared sample. Add 2 ml of the digested, treated reagent blank to the second vial (Total Nitrogen Reagent C vial) as the blank sample. The vial will be warm.
- 18. Cap and invert 10 times to mix. The vials will be warm.

 Note: Proper mixing is important for complete recovery. Hold the vial vertical with the cap up. Invert the vial and wait for all of the solution to flow to the cap end.

 Pause. Return the vial to the upright position and wait for all of the solution to flow to the vial bottom. This is one inversion (10 inversions = 30 seconds).
- 19. Press the **TMR3** key to start the method timer, a 5-minute reaction period will begin.

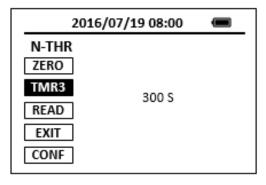


Figure 276

- 20. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted. *Note: The yellow color will intensify.*
- 21. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 22. Place the sample vial in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 23. Repeat step 9, place the Total Nitrogen Reagent C vial containing the reagent blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 24. Place the Total Nitrogen Reagent C vial containing the reagent sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 25. Concentration value based on the last absorbance value measured will be calculated and displayed.

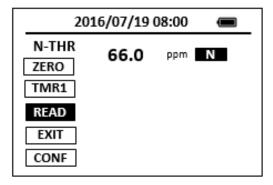


Figure 277

The method is compatible with HACH 10072

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

53. Nitrogen, Ammonia - NH3S

Test Program

Description: SP-910 Nitrogen, Ammonia Method (0.02-0.5 ppm NH3S-N) (Salicylate Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Ammonia Nitrogen Reagent Set for 10-mL samples (Cat. No. 26680-00) Includes:
 - (1) Ammonia Cyanurate Reagent Powder Pillows (Cat. No. 26531-99)
 - (2) Ammonia Salicylate Reagent Powder Pillows (Cat. No. 26532-99)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

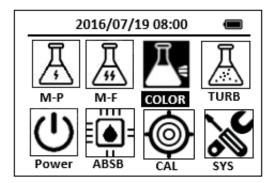


Figure 278

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NH3S** icon.

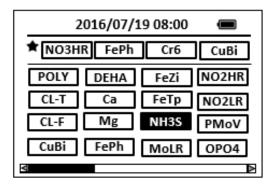


Figure 279

3. Press the OK key to enter **NH3S** test program interface.

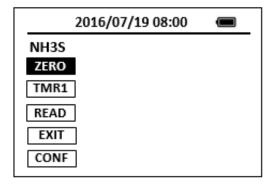


Figure 280

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Fill a sample vial to the 10-ml line with sample (the prepared sample).
- 6. Add the contents of one Ammonia Salicylate Reagent Powder Pillow to each sample vial. Cap the vials and invert to mix.
- 7. Press the **ZERO** key. Pyxis SP-910 will display the page.

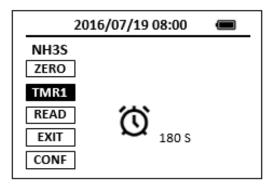


Figure 281

8. Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.

- 9. When the timer reaches the preset time and the reaction is complete, the timer beeps. the cursor will automatically switch to **TMR2** key.
- 10. Add the contents of one Ammonia Cyanurate Reagent Powder Pillow to each sample vial. Cap the vials and shake to dissolve the reagent.

 Note: A green color will develop if ammonia nitrogen is present.
- 11. Press the **TMR2** key to start the method timer, a 15-minute reaction period will begin.

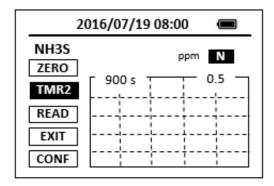


Figure 282

- 12. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menuassisted.
- 13. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 14. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 15. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 16. Concentration value based on the last absorbance value measured will be calculated and displayed.

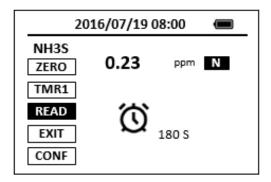


Figure 283

The method is compatible with HACH 8155

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

54. Ammonia Nitrogen - NH3-F

Test Program

Description: SP-910 Ammonia Nitrogen Method (0.01-0.07 ppm) (Fluorescent Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis NH3-F Reagent (PN: 31091) Includes:
 - (1) NH3-F-1
 - (2) NH3-F-2
 - (3) NH3-F-3

Program:

Press OK key (the center key) on the navigation control panel for 3 seconds until
the screen lights up. On the main page, the screen will display eight major feature
groups.

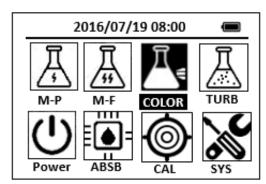


Figure 284

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NH3-F** icon.

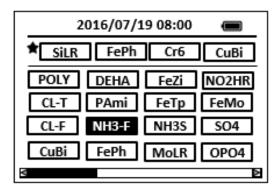


Figure 285

3. Press the OK key to enter **NH3-F** test program interface.

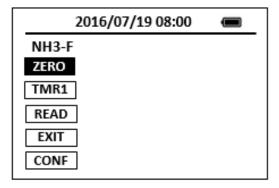


Figure 286

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Fill a sample vial to the 10-ml line with sample (the prepared sample).
- 6. Add the contents of one NH3-F-1 reagent to each sample vial. Swirl the vial to mix the reagent.
- 7. Add 1 ml of NH3-F-2 reagent to each sample vial. Cap the vials and invert to mix.
- 8. Add the contents of one NH3-F-3 reagent to each sample vial. Swirl the vial to mix the reagent.
- 9. Press the **ZERO** key. Pyxis SP-910 will display the page.

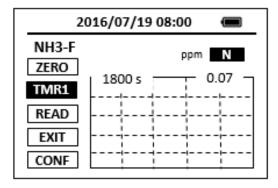


Figure 287

- 10. Press the **TMR1** key to start the method timer, a 30-minute reaction period will begin.
- 11. When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 12. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 13. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 14. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 15. A new concentration value based on the last absorbance value measured will be calculated and displayed.

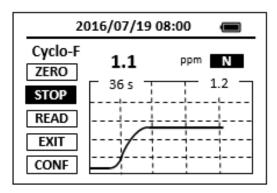


Figure 288

Notes:

- 1. <u>The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.</u>
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

55. Nitrogen, Ammonia (Test 'N Tube) - NH3LR

Test Program

Description: SP-910 Nitrogen, Ammonia, Low Range Method (0.08–2.50 ppm NH3-N) (Salicylate Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. COD/TNT adapter
- 4. HACH AmVer Reagent Set for Nitrogen, Ammonia, Low Range TNT (Cat. No. 26045-45)

Includes:

- (1) AmVer Diluent Reagent, Low Range Test 'N Tube (Cat. No. *)
- (2) Salicylate Reagent Powder Pillows, 5 mL sample (Cat. No. 23952-66)
- (3) Cyanurate Reagent Powder Pillows, 5 mL sample (Cat. No. 23954-66)

Program:

Press OK key (the center key) on the navigation control panel for 3 seconds until
the screen lights up. On the main page, the screen will display eight major
feature groups.

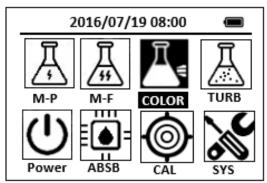


Figure 289

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NH3LR** icon.

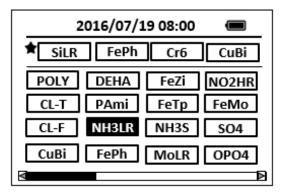


Figure 290

3. Press the OK key to enter NH3LR test program interface.

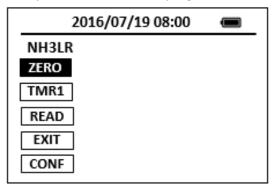


Figure 291

- 4. Remove the caps from 2 AmVer Diluent Reagent vials. Add 2ml of sample to one vial (the sample). Add 2 ml of deionized water to the other vial (the blank).
- 5. Using a funnel, add the contents of one Ammonia Salicylate Reagent Powder Pillow for 5 ml sample to each vial.
- 6. Using a funnel, add the contents of one Ammonia Cyanurate Reagent Powder Pillow for 5 ml sample to each vial.
- 7. Cap the vials tightly and shake thoroughly to dissolve the powder.

 Note: A green color will develop if ammonia is present.
- 8. Insert the COD/TNT adapter into the vial holder by rotating the adapter until it drops into place. Then push down to fully insert it.
- 9. Press the **ZERO** key. Pyxis SP-910 will display the page.

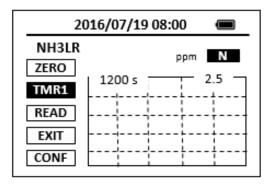


Figure 292

- 10. Press the **TMR1** key to start the method timer, a 20-minute reaction period will begin.
- 11. When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 12. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 13. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 14. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 15. A new concentration value based on the last absorbance value measured will be calculated and displayed.



Figure 293

The method is compatible with HACH10023

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

56. Nitrogen, Ammonia (Test 'N Tube) - NH3HR

Test Program

Description: SP-910 Nitrogen, Ammonia, High Range Method (1.0-50.0 ppm NH3-N) (Salicylate Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. COD/TNT adapter
- 4. HACH AmVer™ Reagent Set for Nitrogen, Ammonia, High Range, TN (Cat. No. 26069-45)

Includes:

- (1) AmVer™ HR Reagent Test 'N Tube™ Vials (Cat. No.*)
- (2) Ammonia Salicylate Reagent Powder Pillows (Cat. No. 23952-66)
- (3) Ammonia Cyanurate Reagent Powder Pillows (Cat. No. 23954-66)

Program:

Press OK key (the center key) on the navigation control panel for 3 seconds until
the screen lights up. On the main page, the screen will display eight major feature
groups.

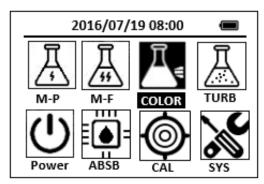


Figure 294

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NH3HR** icon.

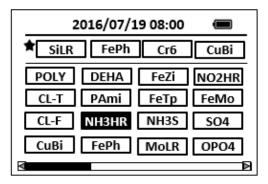


Figure 295

3. Press the OK key to enter **NH3HR** test program interface.

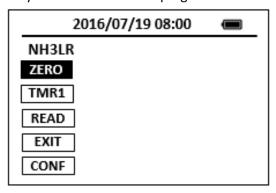


Figure 296

- 4. Remove the caps from 2 AmVer Diluent Reagent High Range Vials. Add 0.1ml of sample to one vial (the sample). Add 0.1 ml of deionized water to the other vial (the blank).
- 5. Using a funnel, add the contents of 1 Ammonia Salicylate Reagent Powder Pillow for 5 ml sample to each vial.
- 6. Using a funnel, add the contents of 1 Ammonia Cyanurate Reagent Powder Pillow for 5 ml sample to each vial.
- 7. Cap the vials tightly and shake thoroughly to dissolve the powder.

 Note: A green color will develop if ammonia is present.
- 8. Insert the COD/TNT adapter into the vial holder by rotating the adapter until it drops into place. Then push down to fully insert it.
- 9. Press the **ZERO** key. Pyxis SP-910 will display the page.

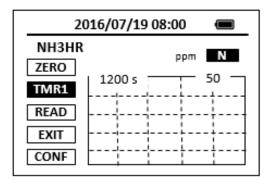


Figure 297

- 10. Press the **TMR1** key to start the method timer, a 20-minute reaction period will begin.
- 11. When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 12. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 13. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 14. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 15. A new concentration value based on the last absorbance value measured will be calculated and displayed.

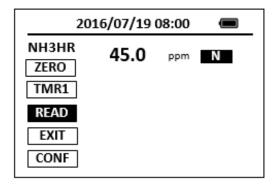


Figure 298

The method is compatible with HACH10031

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

57. Nickel - Ni

Test Program

Description: SP-910 Nickel Method (0-1.00 ppm Ni) (PAN Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 25-ml Sample Vial
- 4. HACH Nickel Reagent Set, 25 mL sample Includes:
 - (1) EDTA Reagent Powder Pillows (Cat. No. 7005-99)
 - (2) Phthalate-Phosphate Reagent Powder Pillows (Cat. No. 21501-66)
 - (3) P.A.N. Indicator Solution, 0.3% (Cat. No. 21502-32)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

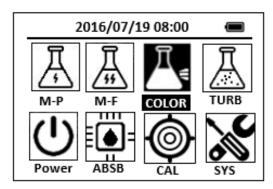


Figure 299

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **Ni** icon.

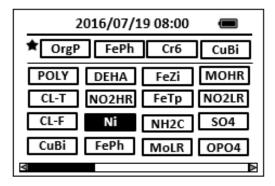


Figure 300

3. Press the OK key to enter Ni test program interface.

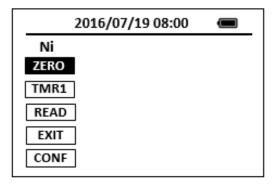


Figure 301

- 4. Fill a 25 ml sample vial to the 25-ml line with deionized water (the blank sample).
- 5. Fill a second 25 ml sample vial to the 25-ml line with sample (the prepared sample).
- 6. Add the contents of one Phthalate-Phosphate Reagent Powder Pillow to each vial, Swirl the vials to mix the reagent.
 - Note: If sample contains iron (Fe3+), all the powder must be dissolved completely before continuing with Step 7.
- 7. Add 1.0 ml of 0.3% PAN Indicator Solution to each vial. Invert several times to mix.
 - Note: Use the plastic dropper provided.
- 8. Press the **ZERO** key. Pyxis SP-910 will display the page.

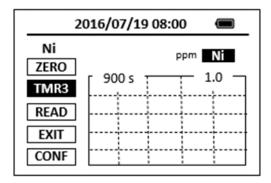


Figure 302

- 9. Press the **TMR1** key to start the method timer, a 15-minute reaction period will begin.
 - <u>Note: The sample solution color may vary from yellowish-orange to dark red. The blank</u> should be yellow
- 10. When the timer reaches the preset time and the reaction is complete, the timer beeps, After the timer beeps, the cursor will automatically switch to EXIT key. Press the OK key to the icon menu-assisted.
- 11. After the timer beeps, add the contents of one EDTA Reagent Powder Pillow to each vial. Swirl the vials to mix the reagent.
- 12. Pour out 10 ml of solution in the 25-ml blank sample vial into a 10-ml sample vial (the blank sample).
- 13. Pour 10 ml of solution in the 25-ml prepared sample vial into a 10-ml sample vial (the prepared sample).
- 14. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 15. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 16. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 17. Concentration value based on the last absorbance value measured will be calculated and displayed.

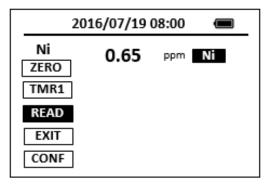


Figure 303

18. Press **EXIT** Key to return to the main page.

The method is compatible with HACH 8150

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

58. Nitrite Direct Read Method - NO2D

Test Program

Description: SP-910 Nitrite Direct Read Method (100-1000 ppm NO2) (Direct Reading Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial

Program:

1. Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

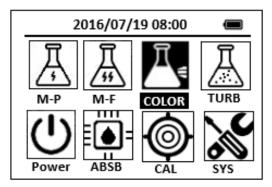


Figure 304

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NO2D** icon.

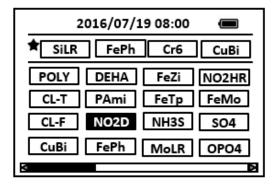


Figure 305

3. Press the OK key to enter **NO2D** test program interface.

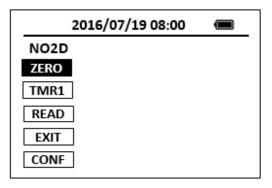


Figure 306

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample). *Note: Analyze samples immediately after collection.*
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

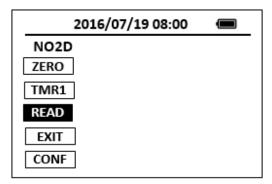


Figure 307

- 6. Fill a sample vial to the 10-ml line with sample (the prepared sample).
- 7. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 8. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 9. Concentration value based on the last absorbance value measured will be calculated and displayed.

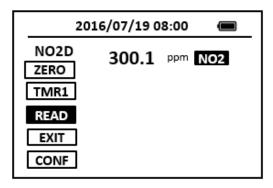


Figure 308

10. Press **EXIT** key to return to the main page.

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized</u> water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

59. Nitrite, High Range - NO2HR

Test Program

Description: SP-910 Nitrite High Range Method (2.0-150.0 ppm NO2) (Ferrous Sulfate Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH NitriVer 2 Nitrite Reagent Powder Pillows Pyxis (Cat. No. 21075-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

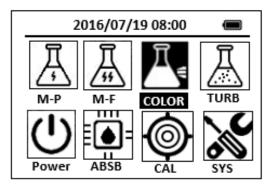


Figure 309

2. Position the cursor to **COLOR** icon by navigation Keys and press the OK Key to enter COLOR selection interface, position the cursor to **NO2HR** icon.

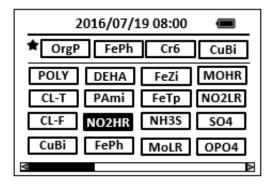


Figure 310

3. Press the OK key to enter **NO2HR** test program interface.

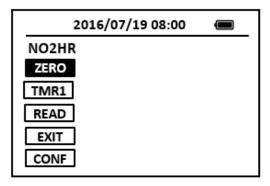


Figure 311

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

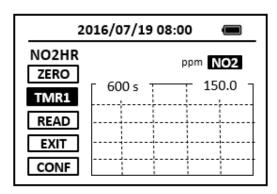


Figure 312

- 6. Take the sample vial out and add the contents of one NitriVer 2 Nitrite Reagent Powder Pillow to the sample vial. Cap the cell and invert 5-7 times to mix.

 Note: A greenish-brown color will develop if nitrite is present.

 Note: Avoid excessive mixing or low results may occur. Accuracy is not affected by undissolved powder.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 10-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

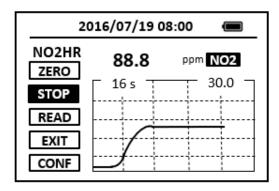


Figure 313

The method is compatible with HACH 8153

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

60. Nitrite, Low Range - NO2LR

Test Program

Description: SP-910 Nitrite Low Range Method (0.005-0.350 ppm NO2) (Diazotization Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH NitriVer 3 Nitrite Reagent Powder Pillows (Cat. No. 21071-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

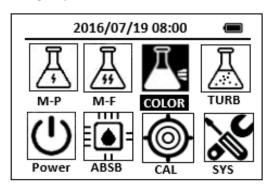


Figure 314

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NO2LR** icon.

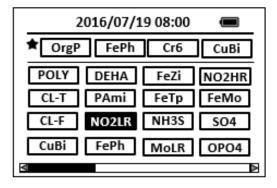


Figure 315

3. Press the OK key to enter NO2LR test program interface.

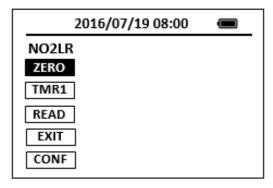


Figure 316

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

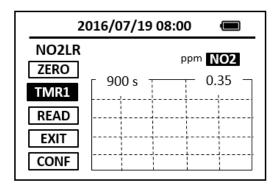


Figure 317

- 6. Take the sample vial out and add the contents of one NitriVer 3 Nitrite Reagent Powder Pillow to the sample vial. Swirl the vial to mix the reagent.

 Note: Accuracy is not affected by undissolved powder.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 15-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

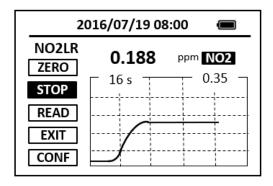


Figure 318

The method is compatible with HACH 8507

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

61. Nitrate, High Range - NO3HR

Test Program

Description: SP-910 Nitrate High Range Method (0.8-30.0 ppm N) (Cadmium Reduction Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH NitraVer 5 Nitrate Reagent Powder (Cat. No.21061-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

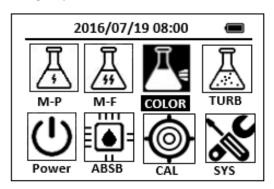


Figure 319

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NO3HR** icon.

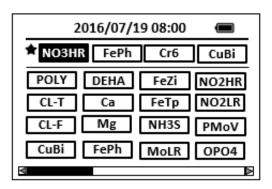


Figure 320

3. Press the OK key to enter **NO3HR** test program interface.

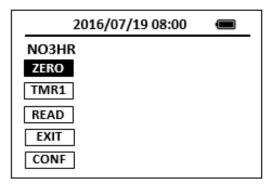


Figure 321

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

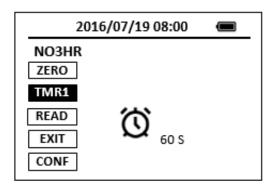


Figure 322

- 6. Take the sample vial out and add the contents of one NitraVer 5 Nitrate Reagent Powder Pillow to the sample vial (the prepared sample), Cap the sample vial.
 - Note: It is important to remove all of the powder from the foil pillow. Tap the pillow until no more powder pours out.
- 7. Press the **TMR1** key to start the method timer, 1-minute reaction period will begin. Shake the sample vigorously until the timer beeps.

 Note: It is important to shake the vial vigorously. Shaking time and technique influence color development. For most accurate results, do successive tests on a standard solution and adjust the shaking time to obtain the correct result.
- 8. After the timer beeps, place sample vial back into the sample vial compartment and press the **TMR2** key to start the method timer, A 5-minute reaction period will begin.
 - Note: A deposit will remain after the reagent dissolves and will not affect test results.
 - Note: An amber color will develop if nitrate nitrogen is present.

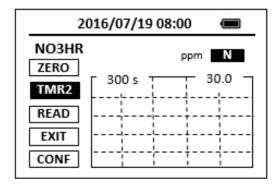


Figure 323

- 9. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

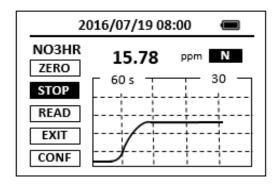


Figure 324

The method is compatible with HACH 8039

Notes:

- 1. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 2. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 3. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3

seconds will wake up the instrument, and return to the original page if it has any measurement data.

62. Nitrate, Mid-Range - NO3MR

Test Program

Description: SP-910 Nitrate Mid-Range Method (0.2-5.0 ppm N) (Cadmium Reduction

Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH NitraVer 5 Nitrate Reagent Powder Pillows (Cat. No. 21061-69)

Program

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

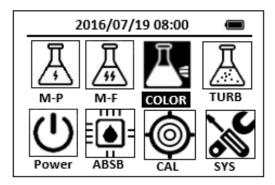


Figure 325

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NO3MR** icon.

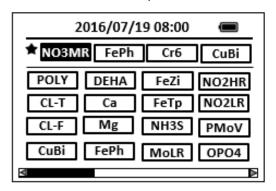


Figure 326

3. Press the OK key to enter **NO3MR** test program interface.

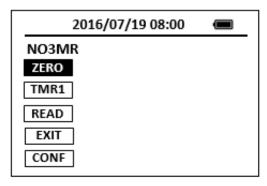


Figure 327

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

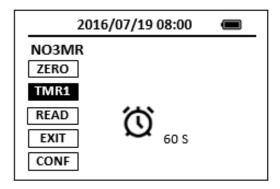


Figure 328

- 6. Take the sample vial out and add the contents of one NitraVer 5 Nitrate Reagent Powder Pillow to the sample vial (the prepared sample), Cap the sample vial.
 - Note: It is important to remove all of the powder from the foil pillow. Tap the pillow until no more powder pours out.
- 7. Press the **TMR1** key to start the method timer, 1-minute reaction period will begin. Shake the sample vigorously until the timer beeps.

 Note: It is important to shake the vial vigorously. Shaking time and technique influence color development. For most accurate results, do successive tests on a standard solution and adjust the shaking time to obtain the correct result.
- 8. After the timer beeps, Place sample vial back into the sample vial compartment and press the **TMR2** key to start the method timer, a 5-minute reaction period will begin.

Note: A deposit will remain after the reagent dissolves and will not affect test results.

Note: An amber color will develop if nitrate nitrogen is present.

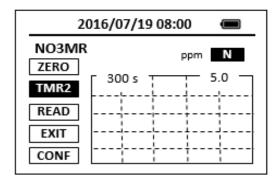


Figure 329

- 9. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

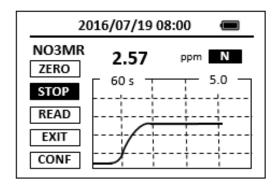


Figure 330

The method is compatible with HACH 8171

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with</u> deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.

4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

Test Program

Description: SP-910 Ozone Method (0.1-2.00 ppm O3) (DPD Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis O3 Reagent (PN: 31118)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. The main page will display eight major feature groups.

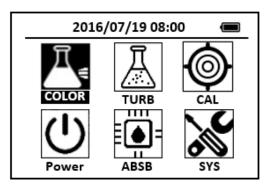


Figure 331

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **O3** icon.

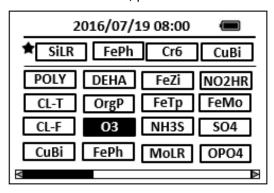


Figure 332

3. Press the OK key to enter **O3** test program interface.

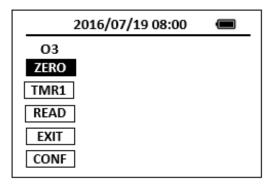


Figure 333

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

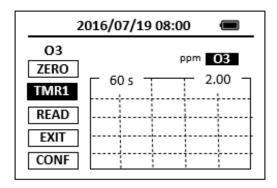


Figure 334

- 6. Take the sample vial out and add the contents of one O3 regent to the sample vial. Swirl the vial to mix the reagent.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 1-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

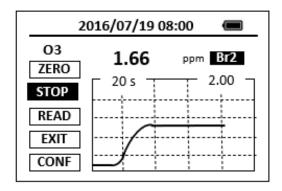


Figure 335

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

64. Nitrate, High Range (Test 'N Tube Method) - NO3CA

Test Program

Description: SP-910 NO3CA Method (0.3-30.0 ppm NO3-N) (Chronotropic Acid Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. COD/TNT adapter
- 3. HACH NitraVer X Nitrate, High Range Test 'N Tube Reagent Set (Cat. No. 26053-45)

Includes:

- (1) Nitrate Pretreatment Solution Vials (Cat. No. *)
- (2) NitraVer X Reagent B Powder Pillows (Cat. No. 26055-46)

Program:

- Insert the COD/TNT adapter into the vial holder by rotating the adapter until it drops into place. Then push down to fully insert it.
 Note: For increased performance, a diffuser band covers the light path holes on the adapter.
- 2. Use a pipet to add 1.0 ml of sample to a Nitrate Pretreatment Solution Vial (the blank).
- 3. Cap the tube and invert 10 times to mix.
 - Note: This test is technique sensitive. Low results may occur if these instructions are not followed. Hold the vial vertical with the cap up. Invert the vial so the cap points down. Wait for all of the solution to flow to the cap end. Pause. Return the vial to the upright position. Wait for all the solution to flow to the vial bottom. This process equals 1 inversion. Do these 10 times.
- 4. Clean the outside of the vial with a towel.

 Note: Wiping with a damp towel, followed by a dry one, will remove
 - fingerprints or other marks
- 5. Place the blank in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 6. Cover the vial tightly with the instrument cap.
- 7. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

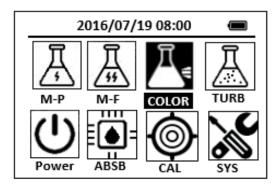


Figure 336

8. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **NO3CA** icon.

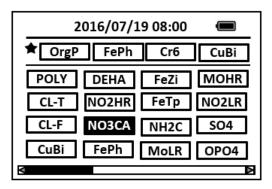


Figure 337

9. Press the ZERO key to zero the instrument. Pyxis SP-910 will display the page.

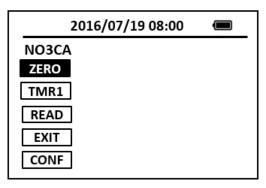


Figure 338

- 10. Remove the cap from the vial. Using a funnel, add the contents of one NitraVer X Reagent B Powder Pillow to the vial.
- 11. Cap tightly and invert 10 times to mix (this will be the prepared sample). *Note: Some solid matter will not dissolve.*
- 12. Place sample vial back into the sample vial compartment and press the **TMR1** key to start the method timer, a 5-minute reaction period will begin. Do not invert the vial again.

Note: A yellow color will develop if nitrate nitrogen is present.

Note: Complete Steps 13-16 within five minutes after the timer beeps.

- 13. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time.
- 14. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

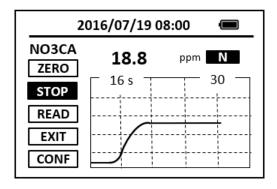


Figure 339

- 15. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the STOP key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.
- 16. Press **EXIT** key to return to the main page.

The method is compatible with HACH 10020

Notes:

- 1. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 2. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 3. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

65. Peroxyacetic - PAA

Test Program

Description: SP-910 Peroxyacetic Method (25.0-500.0 ppm PAA) (Iodimetry Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis PAA Reagent (PN: 31079)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

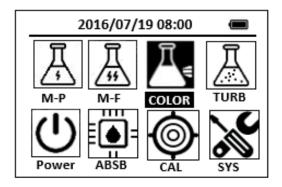


Figure 340

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **PAA** icon.

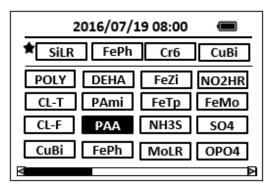


Figure 341

3. Press the OK key to enter PAA test program interface.

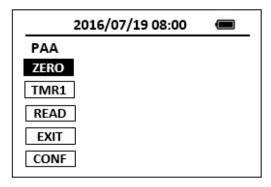


Figure 342

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- Use a soft cloth or lint free paper tissue to clean the sample vial.
 Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the ZERO key to zero the instrument. Pyxis SP-910 will display the page.

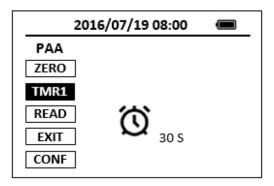


Figure 343

- 6. Take the sample vial out and add the PAA reagent to the sample vial (the prepared sample), Cap the sample vial.
- 7. Press the **TMR1** key to start the method timer, 30-seconds reaction period will begin. Shake the sample vial until the timer beeps.
- 8. After the timer beeps, place sample vial back into the sample vial compartment and press the **TMR2** key to start the method timer, A 30-seconds reaction period will begin.

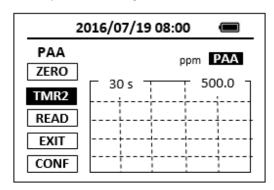


Figure 344

- 9. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

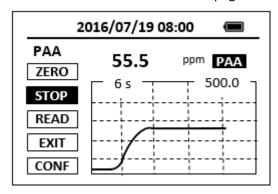


Figure 345

Notes:

- 1. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 2. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 3. <u>Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.</u>

66. Phosphorus, Reactive - OPO4

Test Program

Description: SP-910 Orthophosphate Method (0.05-2.50 ppm PO4) (Molybdenum Blue Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH PhosVer 3 Phosphate Reagent Powder Pillows (Cat. No. 21060-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

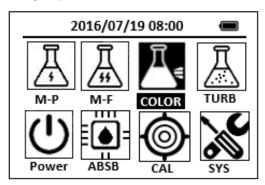


Figure 346

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **OPO4** icon.

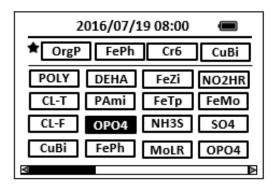


Figure 347

3. Press the OK key to enter **OPO4** test program interface.

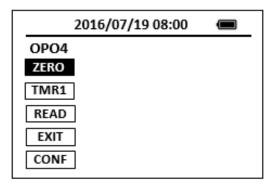


Figure 348

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).

 Note: Clean glassware with 1:1 HCl. Rinse again with deionized water. Do not use detergents containing phosphates to clean glassware.
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

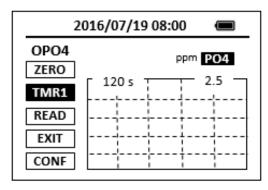


Figure 349

- 6. Take the sample vial out and add the contents of one PhosVer 3 Phosphate Powder Pillow to the sample vial. Swirl the vial to mix the reagent. Shake for 15 seconds.
 - Note: A blue color will develop if phosphate ion is present.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 2-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

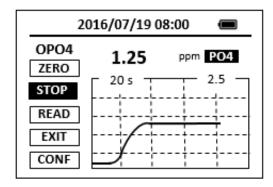


Figure 350

The method is compatible with HACH 8048

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with</u> deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

67. Phosphonates - Orgp

Test Program

Description: SP-910 Phosphonates Method (0.05-2.50 ppm PO4) (Persulfate UV Oxidation Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Ultraviolet (UV) lamp,115V,60HZ
- 4. UV safety goggles
- 5. 25-ml sample Vial
- 6. 50-ml graduated mixing Cylinder
- HACH Phosphonates Reagent Set (Cat. No. 24297-00)
 Includes:
 - (1) PhosVer 3 Phosphate Reagent Powder Pillows (Cat. No. 21060-69)
 - (2) Potassium Persulfate Pillow for Phosphonate (Cat. No. 20847-69)

Program:

1. Choose the appropriate sample size from Table 1 below. Pipet the chosen sample volume into a 50-ml graduated mixing cylinder. Dilute the sample to 50 ml with deionized water. Mix well.

Note: Clean glassware with 1:1 hydrochloric acid, followed by a deionized water rinse.Do not use commercial detergents containing phosphates to clean glassware.

Table 3

Expected Range (mg/L phosphonate)	Sample Volume (ml)
0-2.5	50
0-5	25
0-12.5	10
0-25	5
0-125	1

- 2. Fill a sample vial to the 10-ml mark with diluted sample from Step 1 (label this as the blank).
- 3. Fill another sample vial to the 25-ml mark with diluted sample from Step 1 (label this as the sample).
- 4. Add the one content of one Potassium Persulfate for Phosphonate Powder Pillow to the vial labeled as "sample". Swirl to mix. This vial contains the prepared sample.
- 5. Insert the ultraviolet (UV) lamp into the prepared sample.

Note: Wear UV safety goggles while the lamp is on.

Note: Do not handle the lamp surface. Fingerprints will etch the glass. Wipe lamp with a soft, clean tissue between samples. Do not use detergents with phosphates to wash glassware.

Note: A specially designed cord adapter is available for performing two digestions with a single power supply. A second UV lamp is required.

6. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

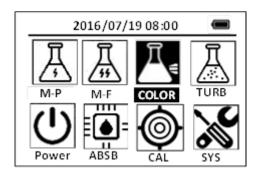


Figure 351

7. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **Orgp** icon.

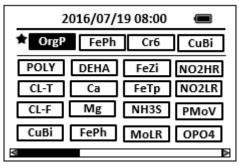


Figure 352

8. Press the OK key to enter **Orgp** test program interface.

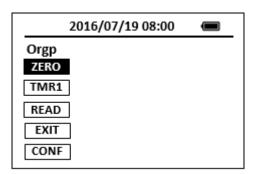


Figure 353

9. Press the **ZERO** key. Pyxis SP-910 will display the page.

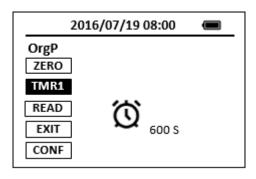


Figure 354

- 10. Turn on the UV lamp to digest the prepared sample.
- 11. Press the **TMR1** key to start the method timer, a 10-minute reaction period will begin.

Note: A blue color will develop if iron is present.

Note: Phosphonates are converted to ortho- phosphate in this step.

Note: The digestion step may take less time. Contaminated samples or a weak lamp could result in incomplete digestion. Check efficiency by running a longer digestion to see if readings increase.

- 12. When the timer beeps, turn off the UV lamp. Remove it from the sample vial.
- 13. Pour 10 ml of sample from the vial labeled as "sample" into a second sample vial. This is the prepared sample.
- 14. Add the contents of one PhosVer 3 Phosphate Reagent Powder Pillow for 10-ml samples to each sample vial. Swirl immediately to mix.

Note: A blue color will form if phosphate is present. Sample and blank vials may develop color.

15. Press the **TMR2** key to start the method timer, a 2-minute reaction period will begin.

Note: If sample is colder than 15 °C, 4 minutes are required for color development.

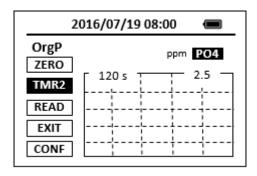


Figure 355

16. When the timer reaches the preset time and the reaction is complete, after the timer beeps, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.

- 17. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 18. Insert the COD/TNT adapter into the vial holder by rotating the adapter until it drops into place. Then push down to fully insert it.
- 19. Repeat step 7, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
 - Note: Perform Steps 18-19 within three minutes after the timer beeps.
- 20. Place the prepared sample into the sample vial compartment. Tightly cover the sample vial with the instrument cap.
- 21. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 22. Concentration value based on the last absorbance value measured will be calculated and displayed.

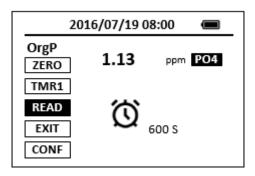


Figure 356

- 23. Press **EXIT** key to return to the main page.
- 24. Results may be expressed in terms of a specific active phosphonate by using the appropriate conversion factor and the equation found in Table 3.

Table 4

Sample Volume (ml) (chosen in Step 1)	Multiplier
50	1
25	2
10	5
5	10
1	50
Phosphate concentration = Instrument Reading x Multiplier	

Table 5

Phosphonate Type	Conversion Factor
PBTC	2.84
NTP	1.050
HEDPA	1.085
EDTMPA	1.148
HMDTMPA	1.295

DETPMPA	1.207	
HPA	1.49	
Active Phosphonate (mg/L) = Phosphate concentration		
from Step 20 x Conversion Factor		

The method is compatible with HACH 9107

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

68. Phosphorus, Reactive - Pami

Test Program

Description: SP-910 Phosphorus, Reactive Method (0.2-30.0 ppm PO4) (Amino Acid Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH High Range Reactive Phosphorus Reagent Set (Cat. No. 22441-00) Includes:
 - (1) Amino Acid Reagent (Cat. No. 1934-32)
 - (2) Molybdate Reagent (Cat. No. 2236-32)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

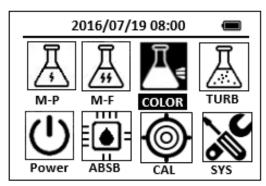


Figure 357

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **Pami** icon.

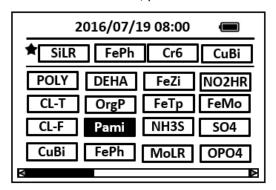


Figure 358

3. Press the OK key to enter **Pami** test program interface.

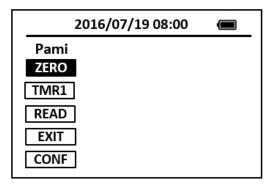


Figure 359

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

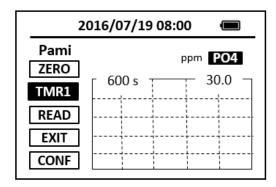


Figure 360

- 6. Take the sample vial out and add 0.4 ml of Molybdate Reagent using a calibrated dropper. Cap and invert several times to mix.
- 7. Add 0.4 ml of Amino Acid Reagent Solution. Cap and invert several times to mix (the prepared sample).
 - Note: A blue color will form if phosphate is present.
- 8. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 10-minute reaction period will begin.
- 9. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 10. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

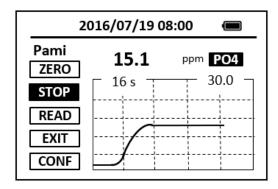


Figure 361

11. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the STOP key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8178

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

69. Phosphorus, Total (Test 'N Tube Method) - P-TLR

Test Program

Description: SP-910 Total Phosphorus Low Range Method (0.06-3.50 ppm PO4) (Test 'N Tube Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. Pyxis RD-910 Reactor
- 3. COD/TNT adapter
- 4. HACH Total Phosphorus Test 'N Tube Reagent Set (Cat. No. 27426-45) Includes:
 - (1) PhosVer 3 Phosphate Reagent Powder Pillows (Cat. No. 21060-46)
 - (2) Potassium Persulfate powder Pillows (Cat. No. 20847-66)
 - (3) Sodium Hydroxide Solution, 1.54 N (Cat. No. 27430-42)
 - (4) Test 'N Tube Acid Dilution Vials (Cat. No. *)

Program:

- Turn on the RD-910 Reactor. Preheat to 150 °C.
 - Note: See RD-910 user manual for selecting pre-programmed temperature applications.
- 2. Insert the COD/TNT adapter into the vial holder until it drops into place. Then push down to fully insert it.
 - Note: For increased performance, a diffuser band covers the light path holes on the adapter. Do not remove the diffuser band
- 3. Use a pipet to add 5.0 ml of sample to a Total and Acid Hydrolyzable Test Vial. *Note: Adjust the pH of stored samples to 6-8before analysis.*
- 4. Using a funnel, add the contents of one Potassium Persulfate Powder Pillow for Phosphonate to the vial.
- 5. Cap tightly and shake to dissolve.
- 6. Place the vial in the Reactor. Heat the vial for 30 minutes.
- 7. Carefully remove the vial from the reactor. Place it in a test tube rack and allow to cool to room temperature.
 - Note: Vials will be hot.
- 8. Use a pipet to add 2.0 ml of 1.54 N sodium hydroxide to the vial. Cap and mix.
- 9. Clean the outside of the vial with a towel.
 - Note: Wiping with a damp towel, followed by a dry one, will remove fingerprints or other marks.
- 10. Place the sample vial in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.

 Note: Do not move the vial from side to side as this can cause errors.

11. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

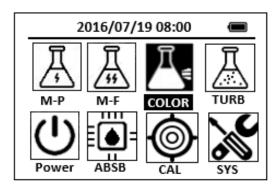


Figure 362

12. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **P-TLR** icon.

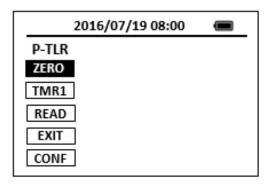


Figure 363

13. Press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

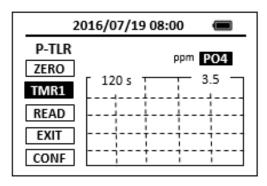


Figure 364

- 14. Remove the cap from the vial. Using a funnel, add the contents of one PhosVer 3 Phosphate Reagent Powder Pillow to the vial.
- 15. Cap tightly and shake for 10-15 seconds.

 Note: The powder will not completely dissolve.
- 16. Place sample vial back into the sample vial compartment and press the **TMR1** key to start the method timer, a 2-minute reaction period will begin.

 Note: Read samples between 2 and 8 minutes after the addition of the PhosVer 3 Phosphate reagent.

- Note: A blue color will form if phosphate is present.
- 17. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 18. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

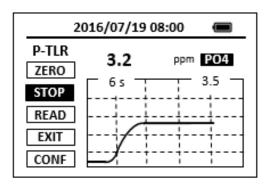


Figure 365

- 19. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the STOP key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.
- 20. Press **EXIT** key to return to the main page.

The method is compatible with HACH 8190

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with</u> deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

70. Phosphorus, Total (Test 'N Tube Method) - P-THR

Test Program

Description: SP-910 Total Phosphorus High Range Method (1.0-100.0 ppm PO4) (Test 'N Tube Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. Pyxis RD-910 Reactor
- 3. COD/TNT adapter
- 4. HACH Total High Range Phosphorus Test 'N Tube™ Reagent Set (Cat. No. 27672-45)

Includes:

- (1) Molybdovanadate Reagent (Cat. No. 20760-26)
- (2) Potassium Persulfate Powder Pillows (Cat. No. 20847-66)
- (3) Sodium Hydroxide Solution, 1.54 N (Cat. No. 27430-42)
- (4) Total Phosphorus Test 'N Tube™ Vials (Cat. No. *)

Program:

1. Turn on the RD-910 Reactor. Preheat to 150 °C.

Note: See RD-910 user manual for selecting pre-programmed temperature applications.

2. Insert the COD/TNT adapter into the vial holder until it drops into place. Then push down to fully insert it.

<u>Note: For increased performance, a diffuser band covers the light path holes on the adapter. Do not remove the diffuser band</u>

- 3. Use a pipet to add 5.0 ml of deionized water to a Total Phosphorus Test 'N Tube Vial (the blank).
- 4. Use a pipet to add 5.0 ml of sample to a Total Phosphorus Test 'N Tube Vial (the sample).

Note: Adjust the pH of stored samples to 6-8before analysis.

- 5. Using a funnel, add the contents of one Potassium Persulfate Powder Pillow to each vial.
- 6. Cap tightly and shake to dissolve.
- 7. Place the vials in the Reactor. Heat for 30 minutes.
- 8. Carefully remove the vials from the reactor. Place them in a test tube rack and allow to cool to room temperature (18–25 °C).
 - *Note: Vials will be hot.*
- 9. Use a pipet to add 2.0 ml of 1.54 N sodium hydroxide to each vial. Cap and invert to mix.
- 10. Use a polyethylene dropper to add 0.5 ml of Molybdovanadate Reagent to

- each vial. Cap and invert to mix
- 11. Place the sample vial in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 12. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

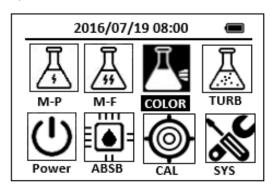


Figure 366

13. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **P-THR** icon.

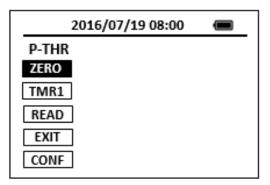


Figure 367

14. Press the **ZERO** key. Pyxis SP-910 will display the page.

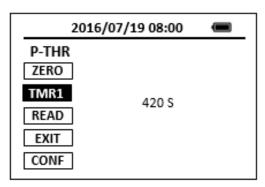


Figure 368

- 15. Press the **TMR1** key to start the method timer, a 7-minute reaction period will begin.
- 16. When the timer reaches the preset time and the reaction is complete, clean the outside of the vial with a towel.

- Note: Wiping with a damp towel, followed by a dry one, will remove fingerprints or other marks.
- 17. Repeat step 5, place the blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 18. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 19. Concentration value based on the last absorbance value measured will be calculated and displayed.

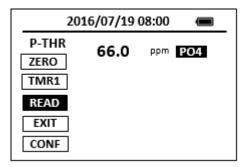


Figure 369

The method is compatible with HACH 10127

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with</u> deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

71. Potential of Hydrogen - pH

Test Program

Description: SP-910 Potential of Hydrogen Method (6.5-8.5) (Colorimetric PH

Determination Using Phenol Red)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Phenol Red Indicator Solution, spec grade (Cat. No. 26575-12)
- 4. Dropper, 0.5&1.0 mL marks (Cat. No. 21247-20)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

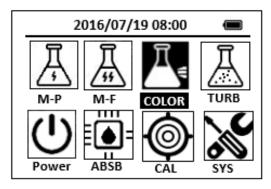


Figure 370

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **pH** icon.

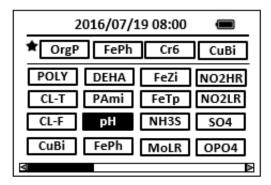


Figure 371

3. Press the OK key to enter **pH** test program interface.

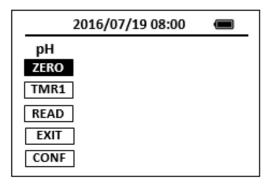


Figure 372

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample)

 Note: Sample temperature must be 21-29 °C.
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

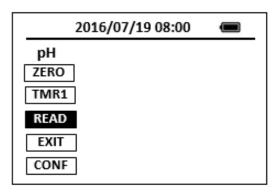


Figure 373

- 6. Take the sample vial out, using a disposable dropper, add 1 ml of Phenol Red Indicator Solution to the vial (the prepared sample). Cap the sample vial and invert twice to mix.
- 7. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 8. Concentration value based on the last absorbance value measured will be calculated and displayed.

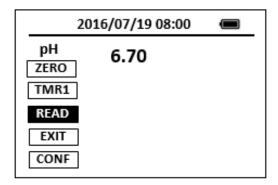


Figure 374

The method is compatible with HACH 10076

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

72. Phosphorus, Reactive - PMoV

Test Program

Description: SP-910 Phosphorus, Reactive Method (0.2-45.0 ppm PO4) (Molybdovanadate Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH Molybdovanadate Reagent (Cat. No. 20760-32)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

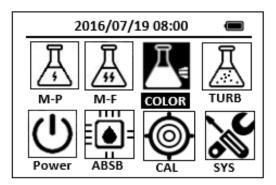


Figure 375

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **PMoV** icon.

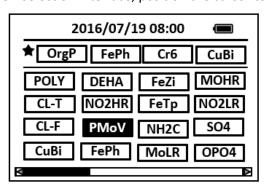


Figure 376

3. Press the OK key to enter **PMoV** test program interface.

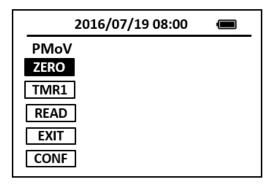


Figure 377

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Fill a sample vial to the 10-ml line with sample (the prepared sample). Note: For best results, the sample temperature should be 20-25 °C.
- 6. Add 0.4 ml of Molybdovanadate Reagent to each sample vial. Cap the vials and invert to mix.
 - Note: A yellow color will form if phosphate is present. A small amount of yellow will be present in the blank, because of the reagent.
- 7. Press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

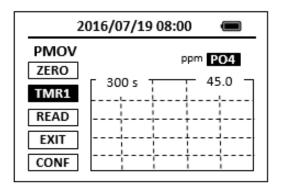


Figure 378

- 8. Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.
- When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to EXIT key. Press the OK key to the icon menu-assisted.
- 10. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 11. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 12. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 13. A new concentration value based on the last absorbance value measured will be calculated and displayed.

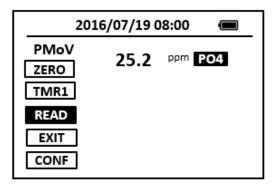


Figure 379

The method is compatible with HACH 8114

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

73. Polymer - POLY

Test Program

Description: SP-910 Polymer Method (2.0-14.0 ppm PAA) (Turbidimetric Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis POLY Reagent (PN: 31092)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

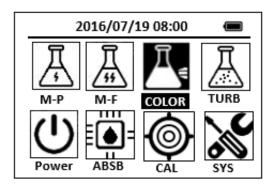


Figure 380

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **POLY** icon.

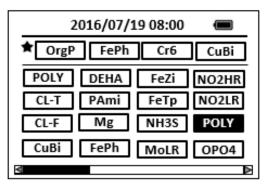


Figure 381

3. Press the OK key to enter **POLY** test program interface.

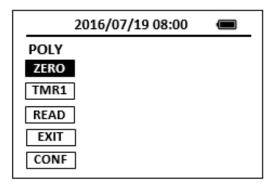


Figure 382

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Fill another sample vial to the 10-ml line with sample (the prepared sample).
- 6. Add the content of POLY-1 reagent to blank vial. add the content of POLY-2 reagent to sample vial. Cap the vials and invert to mix 20 second.

 Note: It is important to shake the vial vigorously. Shaking time and technique influence color development. For most accurate results, do successive tests on a standard solution and adjust the shaking time to obtain the correct result.
- 7. Press the **ZERO** key. Pyxis SP-910 will display the page.

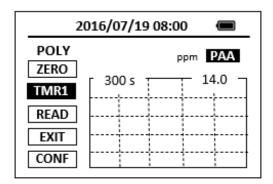


Figure 383

- 8. Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.
- 9. When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 10. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 11. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 12. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 13. Concentration value based on the last absorbance value measured will be calculated and displayed.

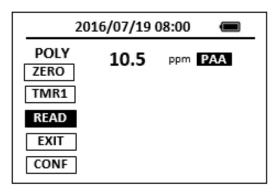


Figure 384

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

74. Antimony Trivalent - Sb3+

Test Program

Description: SP-910 Antimony Trivalent Method (0.01-0.10 ppm Sb) (PADAP Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 100-ml Graduated Cylinder
- 4. Separatory Funnel
- 5. Pyxis Sb3+ Reagent (PN: 31107)

Includes:

- (1) Sb3+-1
- (2) Sb3+-2
- (3) Sb3+-3
- (4) Sb3+ -4

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

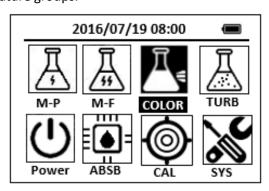


Figure 385

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **Sb3+** icon.

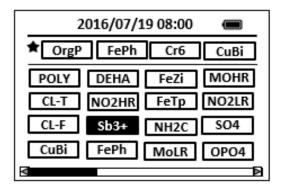


Figure 386

3. Press the OK key to enter **Sb3+** test program interface.

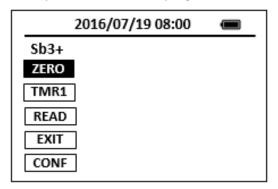


Figure 387

- 4. Accurately measure 100- ml deionized water into separatory funnel (the blank sample).
- 5. Accurately measure 100-ml sample into separatory funnel (the prepared sample).
- 6. Add 3.3 ml of Sb3+ -2 reagent to each sample vial. Cap the vials and invert to mix.
- 7. Add 1 ml of Sb3+ -3 reagent to each sample vial. Cap the vials and invert to mix.
- 8. Add 2ml of Sb3+ -4 reagent to each sample vial. Cap the vials and invert to
- 9. Add 1ml of Sb3+ -1 reagent to each sample vial. Cap the vials and invert to
- 10. Add 8ml benzene to each sample vial. Cap the vials and shake out the vials for 1 minutes, let stand for 10 minutes.
- 11. Move the benzene solution into each 10 ml sample vial separately.
- 12. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

Figure 388

- 13. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 14. Concentration value based on the last absorbance value measured will be calculated and displayed. Pyxis SP-910 will display the page.

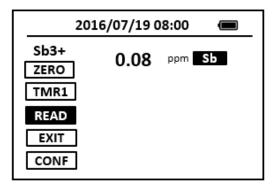


Figure 389

Notes:

- 1. <u>The center key is the OK key. Press the OK key on a selected item to launch the</u> action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with</u> deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

75. Antimony, Total - Sb-T

Test Program

Description: SP-910 Total Antimony Method (0.01–0.11 ppm Sb) (PADAP Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 100-ml Graduated Cylinder
- 4. Hot Plate
- 5. Separatory Funnel
- 4. Pyxis Sb-T Reagent (PN: 31108)
 - Includes:
 - (1) Sb-T-1
 - (2) Sb-T-2
 - (3) Sb-T-3
 - (4) Sb-T-4

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

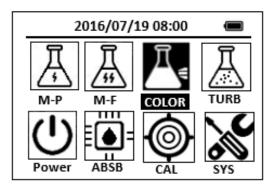


Figure 390

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **Sb-T** icon.

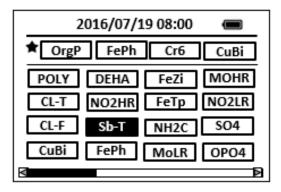


Figure 391

3. Press the OK key to enter **Sb-T** test program interface.

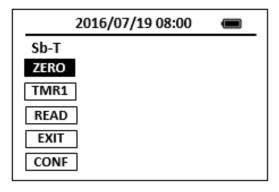


Figure 392

- 4. Accurately measure 100- ml deionized water into beaker (the blank sample).
- 5. Accurately measure 100-ml sample into beaker (the prepared sample).
- 6. Add 3.3 ml of Sb-T-2 reagent to each sample vial and mix the solution well.
- 7. Add 1 ml of Sb-T-3 reagent to each sample vial and mix the solution well.
- 8. Place the beakers on a hot plate, Boil gently for 20 minutes.
- 9. Cool the sample to room temperature.
- 10. Pour the blank into a 100ml graduated cylinder, use deionized water return the volume to 100ml, mix it and pour into separatory funnel.
- 11. Pour the sample into a 100ml graduated cylinder, use deionized water return the volume to 100 ml, mix it and pour into separatory funnel.
- 12. Add 2ml of Sb-T-4 reagent to each separatory funnel. Cap the vials and invert to mix.
- 13. Add 1ml of Sb-T-1 reagent to each sample vial. Cap the vials and invert to mix.
- 14. Add 8ml benzene to each sample vial. Cap the vials and shake out the vials for 1 minutes, let stand for 10 minutes.
- 15. Move the benzene solution into 10 ml sample vial separately.
- 16. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

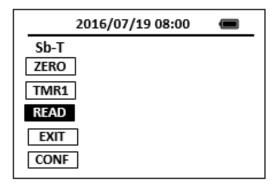


Figure 393

- 17. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 18. Concentration value based on the last absorbance value measured will be calculated and displayed.

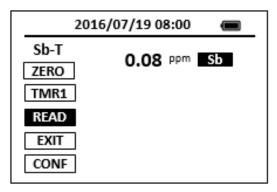


Figure 394

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

76.Sulfide - S2-

Test Program

Description: SP-910 Sulfide Method (0.01-0.70 ppm S²⁻) (Methylene Blue Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Sulfide Reagent (Cat. No. 22445-00) Includes:
 - (1) Sulfide 1 Reagent (Cat. No. 1816-32)
 - (2) Sulfide 2 Reagent (Cat. No. 1817-32)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

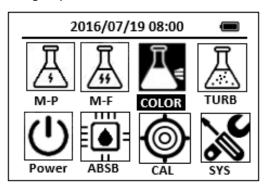


Figure 395

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **S2**- icon.

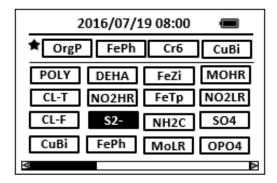


Figure 396

3. Press the OK key to enter **S2-** test program interface.

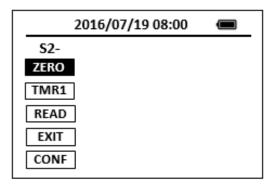


Figure 397

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Fill a sample vial to the 10-ml line with sample (the prepared sample).

 Note: Samples must be analyzed immediately and cannot be preserved for later analysis. Use a pipet to avoid agitation.
- 6. Add 0.4 ml of one Sulfide 1 Reagent to each sample vial. Cap the vials and invert to mix.
 - Note: Use the calibrated 1-ml dropper.
- 7. Add 0.4 ml of one Sulfide 2 Reagent to each sample vial. Cap the vials and invert to mix.
 - <u>Note: A pink color will develop, then the solution will turn blue if sulfide is present.</u>
- 8. Press the **ZERO** key. Pyxis SP-910 will display the page.

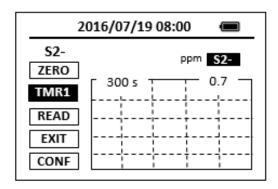


Figure 398

- 9. Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.
- 10. When the timer reaches the preset time and the reaction is complete, the cursor will automatically switch to EXIT key. Press the OK key to the icon menu-assisted.
- 11. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 12. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.

- 13. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 14. Concentration value based on the last absorbance value measured will be calculated and displayed.

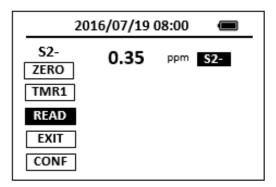


Figure 399

The method is compatible with HACH 8131

Notes:

- 1. <u>The center key is the OK key. Press the OK key on a selected item to launch the</u> action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

77. Silica, High Range - SiHR

Test Program

Description: SP-910 Silica High Range Method (1.0-75.0 ppm SiO2) (Silicomolybdate Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH High Range Silica Reagent Set, 10-mL sample (Cat. No. 24296-00) Includes:
 - (1) Molybdate Reagent Powder Pillows for HR Silica (Cat. No. 21073-69)
 - (2) Acid Reagent Powder Pillows for High Range Silica (Cat. No. 21074-69)
 - (3) Citric Acid Powder Pillows (Cat. No. 21062-69)

Program:

1. Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

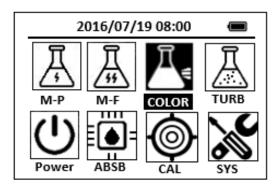


Figure 400

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **SiHR** icon.

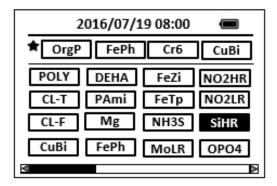


Figure 401

3. Press the OK key to enter **SiHR** test program interface.

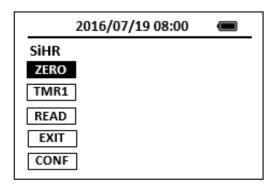


Figure 402

- 4. Fill two sample vials to the 10-ml line with sample. Set one aside as the blank.
 - Note: Sample temperature should be 15 to 25 °C (59 to 77 °F).
- 5. Add the contents of one Molybdate Reagent Powder Pillow for High Range Silica to the other vial (the prepared sample), Swirl the vial to mix the reagent.
- 6. Add the contents of one Acid Reagent Powder Pillow for High Range Silica to the prepared sample, Swirl the vial to mix the reagent.
 - Note: Silica or phosphate will cause a yellow color to develop.
- 7. Press the **ZERO** key and Press the **TMR1** key to start the method timer, 10-minute reaction period will begin.

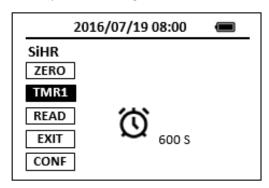


Figure 403

- 8. Press the **TMR1** key to start the method timer, 10-minute reaction period will begin.
- 9. After the timer beeps, add the contents of one Citric Acid Powder Pillow to the prepared sample, Swirl the vial to mix the reagent.
 - Note: The yellow color due to phosphate will disappear.
- 10. Press the **TMR2** key to start the method timer, 2-minute reaction period will begin.

Note: Perform Steps 9-14 within three minutes after the timer beeps

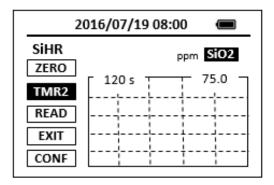


Figure 404

- 11. After the timer beeps, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 12. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 13. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 14. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 15. A new concentration value based on the last absorbance value measured will be calculated and displayed.

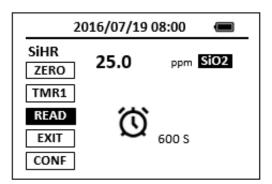


Figure 405

The method is compatible with HACH 8185

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.

4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

78. Silica, Low Range - SiLR

Test Program

Description: SP-910 Silica Low Range Method (0.02-5.0 ppm SiO2) (Heteropoly Blue Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Low Range Silica Reagent Set (Cat. No. 24593-00) Includes:
 - (1) Amino Acid F Reagent Powder Pillows (Cat. No. 22540-69)
 - (2) Citric Acid Powder Pillows (Cat. No. 21062-69)
 - (3) Molybdate 3 Reagent (Cat. No. 1995-26)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

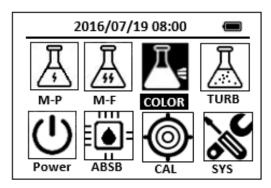


Figure 406

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **SiLR** icon.

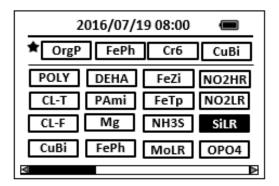


Figure 407

3. Press the OK key to enter **SiLR** test program interface.

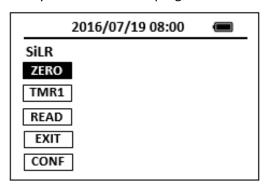


Figure 408

Fill two sample vials to the 10-ml line with sample.
 Add 15 drops of Molybdate 3 Reagent to each sample vial, Swirl the vial to mix the reagent.

Note: Note: For greatest accuracy, hold dropping bottle vertical.

5. Press the **ZERO** key and Press the **TMR1** key to start the method timer, 4-minute reaction period will begin.

Note: Reaction time given is for samples at 20 °C (68 °F). If the sample temperature is 10 °C (50 °F), wait 8 minutes. If the sample temperature is 30 °C (86 °F), wait 2 minutes.

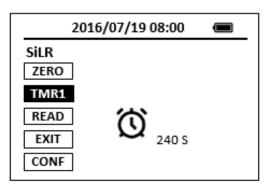


Figure 409

- 6. After the timer beeps, add the contents of one Citric Acid Reagent Powder Pillow to each sample vial, Swirl the vial to mix the reagent.
- 7. Press the **TMR2** key to start the method timer, 1-minute reaction period will begin. Phosphate interference is eliminated during this period.

 Note: Reaction time given is for samples at 20 °C (68 °F). If the sample temperature is 10 °C (50 °F), wait 2 minutes. If the sample temperature is 30 °C (86 °F), wait 30 seconds.

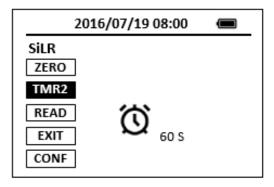


Figure 410

After the timer beeps, add the contents of one Amino Acid F Reagent Powder Pillow to one of the sample vials (the prepared sample), invert to mix.

Note: The sample vial without the Amino Acid F Reagent is the blank.

8. Press the **TMR3** key to start the method timer, 2-minute reaction period will begin.

Note: A blue color will develop if silica is present.

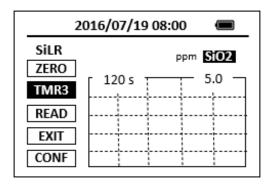


Figure 411

- 9. After the timer beeps, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 10. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 11. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 12. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 13. Concentration value based on the last absorbance value measured will be calculated and displayed.

Figure 412

The method is compatible with HACH 8186

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

79. Sulfite, Low Range - SO2LI

Test Program

Description: SP-910 Sulfite Low Range Method (0.02-5.0 ppm SO2) (Iodimetry Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. Pyxis SO2LI Reagent (PN:30604) Includes:
 - (1) SO2LI-1
 - (2) SO2LI-2

Program:

 Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

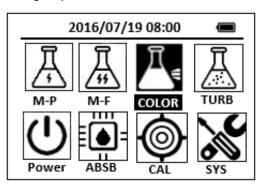


Figure 413

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **SO2LI** icon.

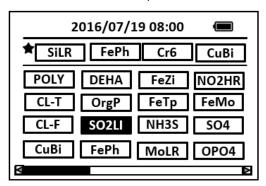


Figure 414

3. Press the OK key to enter **SO2LI** test program interface.

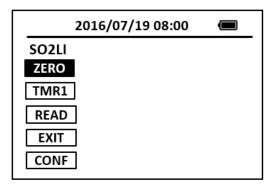


Figure 415

- 4. Fill a sample vial to the 10-ml line with deionized water (the blank sample).
- 5. Fill a sample vial to the 10-ml line with sample (the prepared sample).

 Note: Samples must be analyzed immediately and cannot be preserved for later analysis.
- 6. Add 0.5 ml of SO2LI-1 Reagent to each sample vial. Cap the vials and invert to
- 7. Add 1.0 ml of SO2LI-2 Reagent to each sample vial. Cap the vials and invert to mix.
- 8. Press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

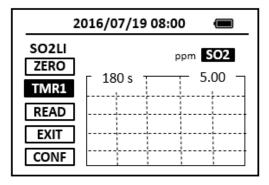


Figure 416

- 9. Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
- 10. When the timer reaches the preset time and the reaction is complete, the timer beeps, after the timer beeps, the cursor will automatically switch to EXIT key. Press the OK key to the icon menu-assisted.
- 11. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 12. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 13. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 14. A new concentration value based on the last absorbance value measured will be calculated and displayed.

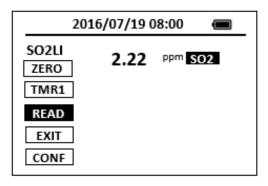


Figure 417

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

Test Program

Description: SP-910 Sulfate Method (4.9-70.0 ppm SO4) (Turbidimetric Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. HACH SulfaVer 4 Sulfate Reagent Powder Pillows (Cat. No. 21067-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

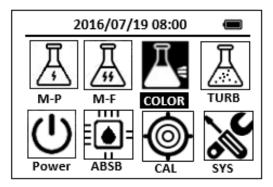


Figure 418

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **SO4** icon.

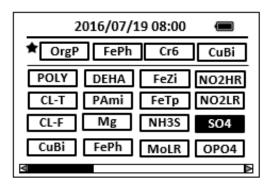


Figure 419

3. Press the OK key to enter **SO4** test program interface.

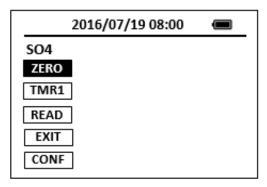


Figure 420

- 4. Fill a sample vial to the 10-ml line with sample (the blank sample).
- 5. Use a soft cloth or lint free paper tissue to clean the sample vial. Place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

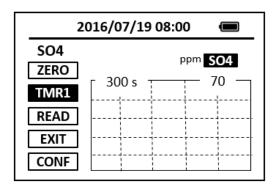


Figure 421

- 6. Take the sample vial out and add the contents of one SulfaVer 4 Sulfate Reagent Powder Pillow to the sample vial. Swirl the vial to mix the reagent.

 Note: A white turbidity will develop if sulfate is present in the sample.

 Note: Accuracy is not affected by undissolved powder.
- 7. Place sample vial back into the sample vial compartment and Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.
- 8. Pyxis SP-910 will start to monitor the reaction between the reagent and the species you want to measure in the water sample. The concentration is shown in the chart as a function of time
- 9. When the timer reaches the preset time and the reaction is complete, the value of concentration will be shown on the page.

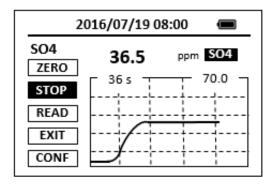


Figure 422

10. The rate of the reaction is often faster than the standard pre-set time, which will become apparent from the concentration-time plot. You can press the STOP key to stop the timer and terminate the timing step. The last read concentration value will be displayed on the page after you terminate the timing step.

The method is compatible with HACH 8051

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

81. Total Organic Carbon - TOC

Test Program

Description: SP-910 TOC Method (0.3-20 ppm C) (Direct Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. Pyxis RD-910 Reactor
- 3. Blender, 120 V, 14 speed/ Blender, 240 V, 14 speed
- 4. COD/TNT adapter
- 5. Cylinder, graduated, 10-mL
- 6. Flask, Erlenmeyer, 50-mL
- 7. Magnetic stirrer
- 8. Paper, pH
- 9. Pipet, TenSette®, 0.1- to 1.0-mL, with pipet tips
- 10. Pipet, TenSette®, 1.0- to 10.0-mL, with pipet tips
- 11. Stir bar, magnetic
- 12. Test tube rack
- 13. Water, organic-free
- 14. Wipes, disposable
- 15. HACH Total Organic Carbon Direct Method Low Range Test 'N Tube Reagent Set (Cat. No. 2760345)
 - Acid Digestion Solution Vials, Low Range TOC (not sold separately)
 - Buffer Solution, Sulfate (not sold separately; see alternate size below) (Cat. No. 45233)
 Funnel, micro, poly (Cat. No. 2584335)
 - ruillei, illicro, poly (Cat. No. 2564555)
 - Indicator Ampule, Low Range TOC (not sold separately)
 - TOC Persulfate Powder Pillows (not sold separately)

Program:

Sample collection

- Collect samples in clean glass bottles.
- Homogenize samples that contain solids to get a representative sample.
- Rinse the sample bottle several times with the sample to be collected.
- Fill the bottle completely full, then tighten the cap on the bottle.
- Analyze the samples as soon as possible for best results.
- Acid preservation is not recommended.
- 1. Turn on the RD-910 Reactor. Preheat to 105 °C.

 Note: See RD-910 user manual for selecting pre-programmed temperature

applications.

- 2. Add 10 mL of sample to a 50-mL Erlenmeyer flask. Put the stir bar in the Erlenmeyer flask.
- 3. Add 0.4 mL of Buffer Solution to the Erlenmeyer flask, pH 2.0. Use pH paper to make sure that the sample pH is 2.
- 4. Put the flask on a stir plate. Stir at a moderate speed for 10 minutes.
- Put a label that says "Reagent Blank" on one Low Range Acid Digestion vial. Put a lable that says "Sample" on a second Low Range Acid Digestion vial.
 Add the contents of one TOC Persulfate Powder Pillow to each Acid Digestion Vial.
- 6. Add 3.0 mL of organic-free water to the blank vial.
- 7. Add 3.0 mL of sample from the Erlenmeyer flask to the sample vial.
- 8. Use deionized water to rinse two blue Low Range Indicator Ampules. Clean the ampules with a wipe. Do not touch the sides of the ampules after they are clean. Hold the ampules by the top.
- 9. Put one unopened ampule into each Acid Digestion Vial. Snap the top off of the ampule when the score aligns with the top of the vial. Let the ampules drop into the vials.

Note: Do not invert or tilt the vials after the ampule is inside.

- 10. Close the vials tightly. Insert them into the reactor.
- 11. Close the reactor. Let the vials react for 2 hours at 103 to 105 °C.
- 12. After two hours, remove the vials from the reactor. Put them in a test tube rack
 - to cool for one hour. Make sure that the vials stay in an upright position at all times . The liquid in the blank should show a dark blue color.
- 13. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. The main page will display eight major feature groups.

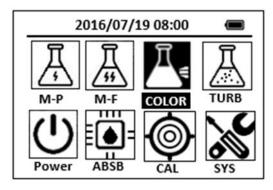


Figure 423

14. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **TOC** icon.

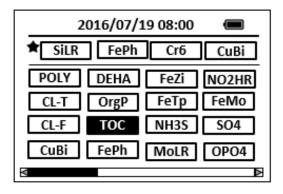


Figure 424

15. Press the OK key to enter **TOC** test program interface.

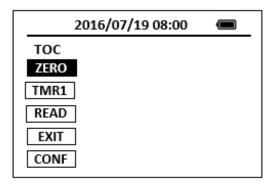


Figure 425

16. Insert the COD/TNT adapter into the vial holder. Then push down to fully insert it.

Note: For increased performance, a diffuser band covers the light path holes on the adapter. Do not remove the diffuser band.

17. Clean the outside of the blank with a towel.

Note: Wiping with a damp towel, followed by a dry one, will remove fingerprints or other marks.

18. Place the blank in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.

Note: Do not move the vial from side to side as this can cause errors.

19. Tightly cover the vial with the instrument cap.

Note: The blank is stable when stored in the dark.

20. press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

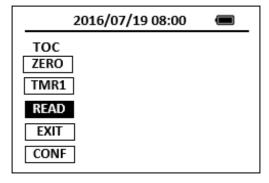


Figure 426

- 21. Clean the outside of the sample vial with a towel.
- 22. Place the sample vial in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 23. Tightly cover the vial with the instrument cap and press the **READ** key.
- 24. Concentration value based on the last absorbance value measured will be calculated and displayed.

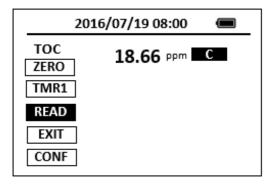


Figure 427

The method is compatible with HACH 10129

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-Key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

82. Urea (Reactor Digestion Method) - Urea

Test Program

Description: SP-910 Urea Method (0.5-10.0 ppm) (Antipyrine Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. Pyxis RD-910 Reactor
- 3. COD/TNT adapter
- 4. Pyxis Urea Reagent (PN: 31081)

Includes:

- (1) Urea-1
- (2) Urea-2

Program:

- Turn on the RD-910 Reactor. Preheat to 105 °C.
 Note: See RD-910 user manual for selecting pre-programmed temperature applications.
- 2. Take out two digestion vials and remove the caps. Add 5ml of sample to one vial (the sample). Add 5 ml of deionized water to the other vial (the blank).
- 3. Using a funnel, add the contents of one Urea-1 reagent to each vial. Swirl the vial to mix the reagent.
- 4. Using a funnel, add the contents of one Urea-2 reagent to each vial. Swirl the vial to mix the reagent.
- 5. Cap the vials tightly and shake thoroughly to dissolve the powder.
- 6. Place the vial in the preheated DRB 200 Reactor. Heat the vials for 30 minutes.
- 7. When the timer reaches the present time, Turn the reactor off.
- 8. Invert each vial several times while still warm. Place the vials under water 2 minutes until the vials have cooled to room temperature.

Colorimetric Determination:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

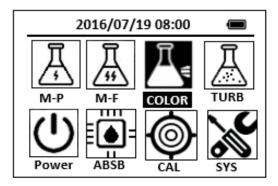


Figure 428

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **Urea** icon.

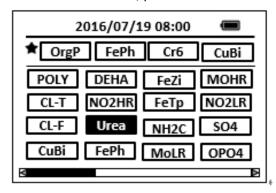


Figure 429

3. Press the OK key to enter Urea test program interface.

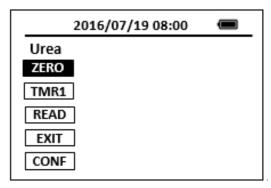


Figure 430

- 4. Insert the COD/TNT adapter into the vial holder until it drops into place. Then push down to fully insert it.
- 5. Clean the outside of the blank with a towel.
- 6. Place the blank in the adapter. Push straight down on the top of the vial until it seats solidly into the adapter.
 - Note: Do not move the vial from side to side as this can cause errors.
- 7. Tightly cover the vial with the instrument cap.
- 8. Press the **ZERO** key to zero the instrument. Pyxis SP-910 will display the page.

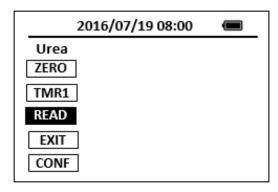


Figure 431

- 9. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 10. A new concentration value based on the last absorbance value measured will be calculated and displayed. Pyxis SP-910 will display the page.

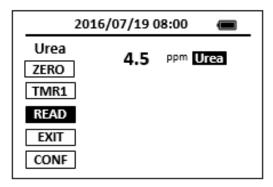


Figure 432

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

Test Program

Description: SP-910 Zinc Method (0.2-3.0 ppm Zn) (Xylenol orange Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 25-ml sample Vial
- 4. Pyxis ZnXO Reagent(PN: 31052)
 - Includes:
 - (1) ZnXO -1
 - (2) ZnXO -2

Program:

1. Press OK key (the center Key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

Figure 433

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **ZnXO** icon.

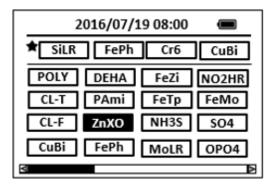


Figure 434

3. Press the OK key to enter **ZnXO** test program interface.

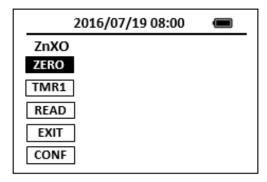


Figure 435

- 4. Fill a 25-ml sample vial with 25 ml of sample.

 <u>Note: Rinse glassware with 1:1 hydrochloric acid and deionized water before use.</u>
- 5. Add the contents of one ZnXO-1 reagent powder pillow. Invert several times to completely dissolve the powder.
- 6. Measure 10 ml of the solution into 10-ml sample vial as the prepared sample. *Note: There is 15 ml remaining solution in the 25-ml sample vial.*
- 7. Measure 10 ml of the remain solution into another 10-ml sample vial, add one ZnXO-2 to the sample vial as the blank sample. Invert several times to completely dissolve the powder.
 - Note: There is 5 ml remaining solution in the 25-ml sample vial.
- 8. Press the **ZERO** Key. Pyxis SP-910 will display the page.

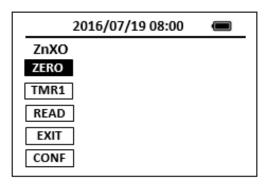


Figure 436

9. Press the **TMR1** key to start the method timer, a 5-minute reaction period will begin.

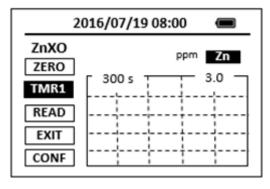


Figure 437

10. When the timer reaches the preset time and the reaction is

- complete, the timer beeps, after the timer beeps, the cursor will automatically switch to **EXIT** Key. Press the OK Key to the icon menu-assisted.
- 11. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 12. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** Key.
- 13. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** Key.
- 14. A new concentration value based on the last absorbance value measured will be calculated and displayed.

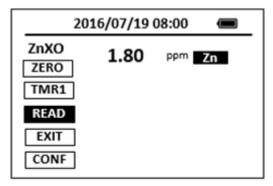


Figure 438

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.

Test Program

Description: SP-910 Zinc Method (0.02-3.00 ppm Zn) (Zincin Method)

Instruments and Reagents:

- 1. SP-910 Portable Water Analyzer
- 2. 10-ml Sample Vial
- 3. 25-ml Sample Vial
- 4. HACH Zinc Reagent Set (Cat. No. 24293-00) Includes:
 - (1) Cyclohexanone (Cat. No. 14033-32)
 - (2) ZincoVer 5 Reagent Powder Pillows (Cat. No. 21066-69)

Program:

1. Press OK key (the center key) on the navigation control panel for 3 seconds until the screen lights up. On the main page, the screen will display eight major feature groups.

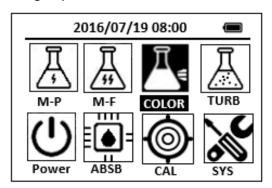


Figure 439

2. Position the cursor to **COLOR** icon by navigation keys and press the OK key to enter COLOR selection interface, position the cursor to **Zn** icon.

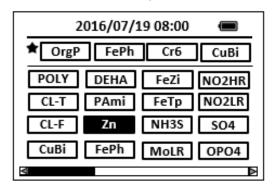


Figure 440

3. Press the OK key to enter **Zn** test program interface.

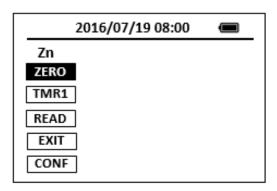


Figure 441

- 4. Fill a 25-ml sample vial with 20 ml of sample.

 Note: Rinse glassware with 1:1 hydrochloric acid and deionized water before use.
- 5. Add the contents of one ZincoVer 5 Reagent Powder Pillow. Invert several times to completely dissolve the powder. If the sample does not turn orange, see the note below.

Note: Powder must be completely dissolved or inconsistent results may occur.

Note: The sample should be orange. If it is brown or blue, dilute the sample and repeat the test. Either the zinc concentration is too high or an interference is present.

Caution: Zn-1 contains cyanide and is very poisonous if taken internally or inhaled. Do not add to an acidic sample. Store away from water and acids.

- 6. Measure 10 ml of the orange solution into 10-ml sample vial (the blank).
- 7. Add 0.5 ml of cyclohexanone to the remaining orange solution in the 25-ml sample vial (the sample).

Note: Use a plastic squeezer. Rubber bulbs may contaminate the cyclohexanone.

- 8. Tightly cap the vial. Shake vigorously for 30 seconds, pour the solution from the 25-ml vial into another 10-ml sample vial (the prepared sample).

 Note: The sample will be red-orange, brown or blue, depending on the zinc concentration.
- 9. Press the **ZERO** key. Pyxis SP-910 will display the page.

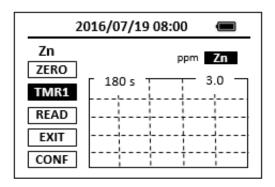


Figure 442

- 10. Press the **TMR1** key to start the method timer, a 3-minute reaction period will begin.
 - Note: Steps 11-14 must be completed within 10 minutes after the timer beeps.
- 11. When the timer reaches the preset time and the reaction is complete, after the timer beeps, the cursor will automatically switch to **EXIT** key. Press the OK key to the icon menu-assisted.
- 12. Use a soft cloth or lint free paper tissue to clean the sample vial.
- 13. Repeat step 2, place the prepared blank into the Pyxis SP-910 sample vial compartment and press the **ZERO** key.
- 14. Place the prepared sample into the Pyxis SP-910 sample vial compartment and press the **READ** key.
- 15. Concentration value based on the last absorbance value measured will be calculated and displayed.

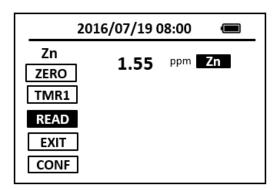


Figure 443

The method is compatible with HACH 9109

Notes:

- 1. The center key is the OK key. Press the OK key on a selected item to launch the action associated with the selected item.
- 2. <u>Rinse all glassware with 1:1 hydrochloric acid solution. Rinse again with deionized water.</u>
- 3. When the sample vial is inserted into the sample vial compartment, the triangular mark on the sample vial should be aligned approximately with the 6 o'clock position of the sample vial compartment or any position consistently.
- 4. Pyxis SP-910 automatically turns itself off after 2 minutes with no-key activity, except for during a measurement. Pressing and holding the OK key for 3 seconds will wake up the instrument, and return to the original page if it has any measurement data.